blob_log
-
skimage.feature.blob_log(image, min_sigma=1, max_sigma=50, num_sigma=10, threshold=0.2, overlap=0.5, log_scale=False)
[source] -
Finds blobs in the given grayscale image.
Blobs are found using the Laplacian of Gaussian (LoG) method [R129]. For each blob found, the method returns its coordinates and the standard deviation of the Gaussian kernel that detected the blob.
Parameters: image : ndarray
Input grayscale image, blobs are assumed to be light on dark background (white on black).
min_sigma : float, optional
The minimum standard deviation for Gaussian Kernel. Keep this low to detect smaller blobs.
max_sigma : float, optional
The maximum standard deviation for Gaussian Kernel. Keep this high to detect larger blobs.
num_sigma : int, optional
The number of intermediate values of standard deviations to consider between
min_sigma
andmax_sigma
.threshold : float, optional.
The absolute lower bound for scale space maxima. Local maxima smaller than thresh are ignored. Reduce this to detect blobs with less intensities.
overlap : float, optional
A value between 0 and 1. If the area of two blobs overlaps by a fraction greater than
threshold
, the smaller blob is eliminated.log_scale : bool, optional
If set intermediate values of standard deviations are interpolated using a logarithmic scale to the base
10
. If not, linear interpolation is used.Returns: A : (n, 3) ndarray
A 2d array with each row representing 3 values,
(y,x,sigma)
where(y,x)
are coordinates of the blob andsigma
is the standard deviation of the Gaussian kernel which detected the blob.Notes
The radius of each blob is approximately
.
References
[R129] (1, 2) http://en.wikipedia.org/wiki/Blob_detection#The_Laplacian_of_Gaussian Examples
123456789101112131415161718192021>>>
from
skimage
import
data, feature, exposure
>>> img
=
data.coins()
>>> img
=
exposure.equalize_hist(img)
# improves detection
>>> feature.blob_log(img, threshold
=
.
3
)
array([[
113.
,
323.
,
1.
],
[
121.
,
272.
,
17.33333333
],
[
124.
,
336.
,
11.88888889
],
[
126.
,
46.
,
11.88888889
],
[
126.
,
208.
,
11.88888889
],
[
127.
,
102.
,
11.88888889
],
[
128.
,
154.
,
11.88888889
],
[
185.
,
344.
,
17.33333333
],
[
194.
,
213.
,
17.33333333
],
[
194.
,
276.
,
17.33333333
],
[
197.
,
44.
,
11.88888889
],
[
198.
,
103.
,
11.88888889
],
[
198.
,
155.
,
11.88888889
],
[
260.
,
174.
,
17.33333333
],
[
263.
,
244.
,
17.33333333
],
[
263.
,
302.
,
17.33333333
],
[
266.
,
115.
,
11.88888889
]])
Please login to continue.