Regression with Discrete Dependent Variable
Regression models for limited and qualitative dependent variables. The module currently allows the estimation of models with binary (Logit, Probit), nominal (MNLogit), or count (Poisson) data.
See Module Reference for commands and arguments.
Examples
# Load the data from Spector and Mazzeo (1980) spector_data = sm.datasets.spector.load() spector_data.exog = sm.add_constant(spector_data.exog) # Logit Model logit_mod = sm.Logit(spector_data.endog, spector_data.exog) logit_res = logit_mod.fit() print logit_res.summary()
Detailed examples can be found here:
Technical Documentation
Currently all models are estimated by Maximum Likelihood and assume independently and identically distributed errors.
All discrete regression models define the same methods and follow the same structure, which is similar to the regression results but with some methods specific to discrete models. Additionally some of them contain additional model specific methods and attributes.
References
General references for this class of models are:
A.C. Cameron and P.K. Trivedi. `Regression Analysis of Count Data`. Cambridge, 1998 G.S. Madalla. `Limited-Dependent and Qualitative Variables in Econometrics`. Cambridge, 1983. W. Greene. `Econometric Analysis`. Prentice Hall, 5th. edition. 2003.
Module Reference
The specific model classes are:
Logit (endog, exog, **kwargs) | Binary choice logit model |
Probit (endog, exog, **kwargs) | Binary choice Probit model |
MNLogit (endog, exog, **kwargs) | Multinomial logit model |
Poisson (endog, exog[, offset, exposure, missing]) | Poisson model for count data |
NegativeBinomial (endog, exog[, ...]) | Negative Binomial Model for count data |
The specific result classes are:
LogitResults (model, mlefit[, cov_type, ...]) | A results class for Logit Model |
ProbitResults (model, mlefit[, cov_type, ...]) | A results class for Probit Model |
CountResults (model, mlefit[, cov_type, ...]) | A results class for count data |
MultinomialResults (model, mlefit[, ...]) | A results class for multinomial data |
NegativeBinomialResults (model, mlefit[, ...]) | A results class for NegativeBinomial 1 and 2 |
DiscreteModel
is a superclass of all discrete regression models. The estimation results are returned as an instance of one of the subclasses of DiscreteResults
. Each category of models, binary, count and multinomial, have their own intermediate level of model and results classes. This intermediate classes are mostly to facilitate the implementation of the methods and attributes defined by DiscreteModel
and DiscreteResults
.
DiscreteModel (endog, exog, **kwargs) | Abstract class for discrete choice models. |
DiscreteResults (model, mlefit[, cov_type, ...]) | A results class for the discrete dependent variable models. |
BinaryModel (endog, exog, **kwargs) | |
BinaryResults (model, mlefit[, cov_type, ...]) | A results class for binary data |
CountModel (endog, exog[, offset, exposure, ...]) | |
MultinomialModel (endog, exog, **kwargs) |
Please login to continue.