-
numpy.fft.fft(a, n=None, axis=-1, norm=None)[source] -
Compute the one-dimensional discrete Fourier Transform.
This function computes the one-dimensional n-point discrete Fourier Transform (DFT) with the efficient Fast Fourier Transform (FFT) algorithm [CT].
Parameters: a : array_like
Input array, can be complex.
n : int, optional
Length of the transformed axis of the output. If
nis smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. Ifnis not given, the length of the input along the axis specified byaxisis used.axis : int, optional
Axis over which to compute the FFT. If not given, the last axis is used.
norm : {None, ?ortho?}, optional
New in version 1.10.0.
Normalization mode (see
numpy.fft). Default is None.Returns: out : complex ndarray
The truncated or zero-padded input, transformed along the axis indicated by
axis, or the last one ifaxisis not specified.Raises: IndexError
if
axesis larger than the last axis ofa.See also
Notes
FFT (Fast Fourier Transform) refers to a way the discrete Fourier Transform (DFT) can be calculated efficiently, by using symmetries in the calculated terms. The symmetry is highest when
nis a power of 2, and the transform is therefore most efficient for these sizes.The DFT is defined, with the conventions used in this implementation, in the documentation for the
numpy.fftmodule.References
[CT] Cooley, James W., and John W. Tukey, 1965, ?An algorithm for the machine calculation of complex Fourier series,? Math. Comput. 19: 297-301. Examples
>>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8)) array([ -3.44505240e-16 +1.14383329e-17j, 8.00000000e+00 -5.71092652e-15j, 2.33482938e-16 +1.22460635e-16j, 1.64863782e-15 +1.77635684e-15j, 9.95839695e-17 +2.33482938e-16j, 0.00000000e+00 +1.66837030e-15j, 1.14383329e-17 +1.22460635e-16j, -1.64863782e-15 +1.77635684e-15j])>>> import matplotlib.pyplot as plt >>> t = np.arange(256) >>> sp = np.fft.fft(np.sin(t)) >>> freq = np.fft.fftfreq(t.shape[-1]) >>> plt.plot(freq, sp.real, freq, sp.imag) [<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>] >>> plt.show()
In this example, real input has an FFT which is Hermitian, i.e., symmetric in the real part and anti-symmetric in the imaginary part, as described in the
numpy.fftdocumentation.(Source code)
numpy.fft.fft()
2025-01-10 15:47:30
Please login to continue.