-
numpy.linalg.eigh(a, UPLO='L')
[source] -
Return the eigenvalues and eigenvectors of a Hermitian or symmetric matrix.
Returns two objects, a 1-D array containing the eigenvalues of
a
, and a 2-D square array or matrix (depending on the input type) of the corresponding eigenvectors (in columns).Parameters: a : (..., M, M) array
Hermitian/Symmetric matrices whose eigenvalues and eigenvectors are to be computed.
UPLO : {?L?, ?U?}, optional
Specifies whether the calculation is done with the lower triangular part of
a
(?L?, default) or the upper triangular part (?U?).Returns: w : (..., M) ndarray
The eigenvalues in ascending order, each repeated according to its multiplicity.
v : {(..., M, M) ndarray, (..., M, M) matrix}
The column
v[:, i]
is the normalized eigenvector corresponding to the eigenvaluew[i]
. Will return a matrix object ifa
is a matrix object.Raises: LinAlgError
If the eigenvalue computation does not converge.
See also
Notes
New in version 1.8.0.
Broadcasting rules apply, see the
numpy.linalg
documentation for details.The eigenvalues/eigenvectors are computed using LAPACK routines _syevd, _heevd
The eigenvalues of real symmetric or complex Hermitian matrices are always real. [R38] The array
v
of (column) eigenvectors is unitary anda
,w
, andv
satisfy the equationsdot(a, v[:, i]) = w[i] * v[:, i]
.References
[R38] (1, 2) G. Strang, Linear Algebra and Its Applications, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pg. 222. Examples
>>> from numpy import linalg as LA >>> a = np.array([[1, -2j], [2j, 5]]) >>> a array([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> w, v = LA.eigh(a) >>> w; v array([ 0.17157288, 5.82842712]) array([[-0.92387953+0.j , -0.38268343+0.j ], [ 0.00000000+0.38268343j, 0.00000000-0.92387953j]])
>>> np.dot(a, v[:, 0]) - w[0] * v[:, 0] # verify 1st e-val/vec pair array([2.77555756e-17 + 0.j, 0. + 1.38777878e-16j]) >>> np.dot(a, v[:, 1]) - w[1] * v[:, 1] # verify 2nd e-val/vec pair array([ 0.+0.j, 0.+0.j])
>>> A = np.matrix(a) # what happens if input is a matrix object >>> A matrix([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> w, v = LA.eigh(A) >>> w; v array([ 0.17157288, 5.82842712]) matrix([[-0.92387953+0.j , -0.38268343+0.j ], [ 0.00000000+0.38268343j, 0.00000000-0.92387953j]])
numpy.linalg.eigh()
2017-01-10 18:14:43
Please login to continue.