-
sklearn.metrics.classification_report(y_true, y_pred, labels=None, target_names=None, sample_weight=None, digits=2)
[source] -
Build a text report showing the main classification metrics
Read more in the User Guide.
Parameters: y_true : 1d array-like, or label indicator array / sparse matrix
Ground truth (correct) target values.
y_pred : 1d array-like, or label indicator array / sparse matrix
Estimated targets as returned by a classifier.
labels : array, shape = [n_labels]
Optional list of label indices to include in the report.
target_names : list of strings
Optional display names matching the labels (same order).
sample_weight : array-like of shape = [n_samples], optional
Sample weights.
digits : int
Number of digits for formatting output floating point values
Returns: report : string
Text summary of the precision, recall, F1 score for each class.
Examples
123456789101112>>>
from
sklearn.metrics
import
classification_report
>>> y_true
=
[
0
,
1
,
2
,
2
,
2
]
>>> y_pred
=
[
0
,
0
,
2
,
2
,
1
]
>>> target_names
=
[
'class 0'
,
'class 1'
,
'class 2'
]
>>>
print
(classification_report(y_true, y_pred, target_names
=
target_names))
precision recall f1
-
score support
class
0
0.50
1.00
0.67
1
class
1
0.00
0.00
0.00
1
class
2
1.00
0.67
0.80
3
avg
/
total
0.70
0.60
0.61
5
sklearn.metrics.classification_report()
Examples using

2025-01-10 15:47:30
Please login to continue.