tf.contrib.rnn.AttentionCellWrapper

class tf.contrib.rnn.AttentionCellWrapper Basic attention cell wrapper. Implementation based on https://arxiv.org/pdf/1601.06733.pdf.

tf.contrib.distributions.Binomial.mode()

tf.contrib.distributions.Binomial.mode(name='mode') Mode. Additional documentation from Binomial: Note that when (n + 1) * p is an integer, there are actually two modes. Namely, (n + 1) * p and (n + 1) * p - 1 are both modes. Here we return only the larger of the two modes.

tf.contrib.rnn.TimeFreqLSTMCell.__call__()

tf.contrib.rnn.TimeFreqLSTMCell.__call__(inputs, state, scope=None) Run one step of LSTM. Args: inputs: input Tensor, 2D, batch x num_units. state: state Tensor, 2D, batch x state_size. scope: VariableScope for the created subgraph; defaults to "TimeFreqLSTMCell". Returns: A tuple containing: - A 2D, batch x output_dim, Tensor representing the output of the LSTM after reading "inputs" when previous state was "state". Here output_dim is num_units. - A 2D, batch x state_size, Tensor represe

tf.contrib.rnn.GridLSTMCell.__call__()

tf.contrib.rnn.GridLSTMCell.__call__(inputs, state, scope=None) Run one step of LSTM. Args: inputs: input Tensor, 2D, batch x num_units. state: state Tensor, 2D, batch x state_size. scope: VariableScope for the created subgraph; defaults to "LSTMCell". Returns: A tuple containing: - A 2D, batch x output_dim, Tensor representing the output of the LSTM after reading "inputs" when previous state was "state". Here output_dim is num_units. - A 2D, batch x state_size, Tensor representing the ne

tf.SparseTensorValue.__repr__()

tf.SparseTensorValue.__repr__() Return a nicely formatted representation string

tf.FixedLenSequenceFeature.allow_missing

tf.FixedLenSequenceFeature.allow_missing Alias for field number 2

tf.contrib.graph_editor.filter_ops_from_regex()

tf.contrib.graph_editor.filter_ops_from_regex(ops, regex) Get all the operations that match the given regex. Args: ops: an object convertible to a list of tf.Operation. regex: a regular expression matching the operation's name. For example, "^foo(/.*)?$" will match all the operations in the "foo" scope. Returns: A list of tf.Operation. Raises: TypeError: if ops cannot be converted to a list of tf.Operation.

tf.contrib.graph_editor.make_list_of_t()

tf.contrib.graph_editor.make_list_of_t(ts, check_graph=True, allow_graph=True, ignore_ops=False) Convert ts to a list of tf.Tensor. Args: ts: can be an iterable of tf.Tensor, a tf.Graph or a single tensor. check_graph: if True check if all the tensors belong to the same graph. allow_graph: if False a tf.Graph cannot be converted. ignore_ops: if True, silently ignore tf.Operation. Returns: A newly created list of tf.Tensor. Raises: TypeError: if ts cannot be converted to a list of tf.Ten

tf.contrib.learn.TensorFlowRNNRegressor.get_variable_names()

tf.contrib.learn.TensorFlowRNNRegressor.get_variable_names() Returns list of all variable names in this model. Returns: List of names.

tf.contrib.distributions.Poisson.__init__()

tf.contrib.distributions.Poisson.__init__(lam, validate_args=False, allow_nan_stats=True, name='Poisson') Construct Poisson distributions. Args: lam: Floating point tensor, the rate parameter of the distribution(s). lam must be positive. validate_args: Boolean, default False. Whether to assert that lam > 0 as well as inputs to pmf computations are non-negative integers. If validate_args is False, then pmf computations might return NaN, but can be evaluated at any real value. allow_nan_st