tf.contrib.learn.DNNClassifier.predict_proba()

tf.contrib.learn.DNNClassifier.predict_proba(*args, **kwargs) Returns prediction probabilities for given features. (deprecated arguments) SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-15. Instructions for updating: The default behavior of predict() is changing. The default value for as_iterable will change to True, and then the flag will be removed altogether. The behavior of this flag is described below. Args: x: features. input_fn: Input function. If set, x and y must

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.parameters

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.parameters Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Beta.cdf()

tf.contrib.distributions.Beta.cdf(value, name='cdf') Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x] Args: value: float or double Tensor. name: The name to give this op. Returns: cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.Uniform.cdf()

tf.contrib.distributions.Uniform.cdf(value, name='cdf') Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x] Args: value: float or double Tensor. name: The name to give this op. Returns: cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.WishartFull.parameters

tf.contrib.distributions.WishartFull.parameters Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Chi2.entropy()

tf.contrib.distributions.Chi2.entropy(name='entropy') Shanon entropy in nats. Additional documentation from Gamma: This is defined to be entropy = alpha - log(beta) + log(Gamma(alpha)) + (1-alpha)digamma(alpha) where digamma(alpha) is the digamma function.

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.input_dict

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.input_dict

tf.contrib.distributions.Beta.variance()

tf.contrib.distributions.Beta.variance(name='variance') Variance.

tf.contrib.distributions.MultivariateNormalCholesky.pmf()

tf.contrib.distributions.MultivariateNormalCholesky.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.WishartFull.pmf()

tf.contrib.distributions.WishartFull.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.