tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.entropy()

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.entropy(name='entropy')

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.entropy()

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.entropy(name='entropy')

tf.contrib.graph_editor.SubGraphView.find_op_by_name()

tf.contrib.graph_editor.SubGraphView.find_op_by_name(op_name) Return the op named op_name. Args: op_name: the name to search for Returns: The op named op_name. Raises: ValueError: if the op_name could not be found. AssertionError: if the name was found multiple time.

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.name

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.name

tf.contrib.distributions.BaseDistribution.sample_n()

tf.contrib.distributions.BaseDistribution.sample_n(n, seed=None, name='sample') Generate n samples. Args: n: Scalar Tensor of type int32 or int64, the number of observations to sample. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with a prepended dimension (n,). Raises: TypeError: if n is not an integer type.

tf.contrib.learn.monitors.StopAtStep

class tf.contrib.learn.monitors.StopAtStep Monitor to request stop at a specified step.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.value()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.value(name='value')

tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.name

tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.name

tf.contrib.distributions.Chi2WithAbsDf.parameters

tf.contrib.distributions.Chi2WithAbsDf.parameters Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Normal.mu

tf.contrib.distributions.Normal.mu Distribution parameter for the mean.