tf.contrib.distributions.LaplaceWithSoftplusScale.mode()

tf.contrib.distributions.LaplaceWithSoftplusScale.mode(name='mode') Mode.

tf.contrib.distributions.NormalWithSoftplusSigma.validate_args

tf.contrib.distributions.NormalWithSoftplusSigma.validate_args Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.mean()

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.mean(name='mean') Mean. Additional documentation from InverseGamma: The mean of an inverse gamma distribution is beta / (alpha - 1), when alpha > 1, and NaN otherwise. If self.allow_nan_stats is False, an exception will be raised rather than returning NaN

tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.clone()

tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.clone(name=None, **dist_args)

tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.graph

tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.graph

tf.contrib.framework.assert_same_float_dtype()

tf.contrib.framework.assert_same_float_dtype(tensors=None, dtype=None) Validate and return float type based on tensors and dtype. For ops such as matrix multiplication, inputs and weights must be of the same float type. This function validates that all tensors are the same type, validates that type is dtype (if supplied), and returns the type. Type must be dtypes.float32 or dtypes.float64. If neither tensors nor dtype is supplied, default to dtypes.float32. Args: tensors: Tensors of input val

tf.contrib.framework.assert_or_get_global_step()

tf.contrib.framework.assert_or_get_global_step(graph=None, global_step_tensor=None) Verifies that a global step tensor is valid or gets one if None is given. If global_step_tensor is not None, check that it is a valid global step tensor (using assert_global_step). Otherwise find a global step tensor using get_global_step and return it. Args: graph: The graph to find the global step tensor for. global_step_tensor: The tensor to check for suitability as a global step. If None is given (the def

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.distribution

tf.VarLenFeature.__repr__()

tf.VarLenFeature.__repr__() Return a nicely formatted representation string

tf.contrib.distributions.Multinomial.batch_shape()

tf.contrib.distributions.Multinomial.batch_shape(name='batch_shape') Shape of a single sample from a single event index as a 1-D Tensor. The product of the dimensions of the batch_shape is the number of independent distributions of this kind the instance represents. Args: name: name to give to the op Returns: batch_shape: Tensor.