tf.contrib.distributions.Beta.cdf()

tf.contrib.distributions.Beta.cdf(value, name='cdf') Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x] Args: value: float or double Tensor. name: The name to give this op. Returns: cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.Uniform.cdf()

tf.contrib.distributions.Uniform.cdf(value, name='cdf') Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x] Args: value: float or double Tensor. name: The name to give this op. Returns: cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.WishartFull.parameters

tf.contrib.distributions.WishartFull.parameters Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Chi2.entropy()

tf.contrib.distributions.Chi2.entropy(name='entropy') Shanon entropy in nats. Additional documentation from Gamma: This is defined to be entropy = alpha - log(beta) + log(Gamma(alpha)) + (1-alpha)digamma(alpha) where digamma(alpha) is the digamma function.

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.input_dict

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.input_dict

tf.contrib.distributions.Beta.variance()

tf.contrib.distributions.Beta.variance(name='variance') Variance.

tf.contrib.distributions.MultivariateNormalCholesky.pmf()

tf.contrib.distributions.MultivariateNormalCholesky.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.WishartFull.scale_operator_pd

tf.contrib.distributions.WishartFull.scale_operator_pd Wishart distribution scale matrix as an OperatorPD.

tf.TFRecordReader.reader_ref

tf.TFRecordReader.reader_ref Op that implements the reader.

tf.contrib.distributions.Normal.is_continuous

tf.contrib.distributions.Normal.is_continuous