tf.contrib.distributions.WishartFull.scale_operator_pd

tf.contrib.distributions.WishartFull.scale_operator_pd Wishart distribution scale matrix as an OperatorPD.

tf.TFRecordReader.reader_ref

tf.TFRecordReader.reader_ref Op that implements the reader.

tf.contrib.distributions.Normal.is_continuous

tf.contrib.distributions.Normal.is_continuous

tf.contrib.learn.DNNClassifier.export()

tf.contrib.learn.DNNClassifier.export(export_dir, input_fn=None, input_feature_key=None, use_deprecated_input_fn=True, signature_fn=None, default_batch_size=1, exports_to_keep=None) See BaseEstimator.export.

tf.contrib.distributions.LaplaceWithSoftplusScale.name

tf.contrib.distributions.LaplaceWithSoftplusScale.name Name prepended to all ops created by this Distribution.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.pmf()

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.graph

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.graph

tf.contrib.distributions.Uniform.allow_nan_stats

tf.contrib.distributions.Uniform.allow_nan_stats Python boolean describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is u

tf.contrib.distributions.Normal.variance()

tf.contrib.distributions.Normal.variance(name='variance') Variance.

tf.FIFOQueue

class tf.FIFOQueue A queue implementation that dequeues elements in first-in first-out order. See tf.QueueBase for a description of the methods on this class.