numpy.random.exponential()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.exponential(scale=1.0, size=None) Draw samples from an exponential distribution. Its probability

2025-01-10 15:47:30
numpy.polynomial.chebyshev.chebx
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Chebyshev Module

numpy.polynomial.chebyshev.chebx = array([0, 1])

2025-01-10 15:47:30
numpy.ma.masked_greater_equal()
  • References/Python/NumPy/Routines/Masked array operations

numpy.ma.masked_greater_equal(x, value, copy=True)

2025-01-10 15:47:30
MaskedArray.get_fill_value()
  • References/Python/NumPy/Routines/Masked array operations

MaskedArray.get_fill_value()

2025-01-10 15:47:30
numpy.polynomial.polynomial.polyx
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Polynomial Module

numpy.polynomial.polynomial.polyx = array([0, 1])

2025-01-10 15:47:30
Hermite.convert()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Hermite Module, “Physicists’”

Hermite.convert(domain=None, kind=None, window=None)

2025-01-10 15:47:30
Chebyshev.degree()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Chebyshev Module

Chebyshev.degree()

2025-01-10 15:47:30
RandomState.bytes()
  • References/Python/NumPy/Routines/Random sampling

RandomState.bytes(length) Return random bytes.

2025-01-10 15:47:30
numpy.mat()
  • References/Python/NumPy/Routines/Array creation routines

numpy.mat(data, dtype=None)

2025-01-10 15:47:30
numpy.random.sample()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.sample(size=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the

2025-01-10 15:47:30