numpy.polyfit()
  • References/Python/NumPy/Routines/Polynomials/Poly1d

numpy.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False)

2025-01-10 15:47:30
numpy.polynomial.hermite_e.hermeone
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/HermiteE Module, “Probabilists’”

numpy.polynomial.hermite_e.hermeone = array([1])

2025-01-10 15:47:30
numpy.polynomial.legendre.legline()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Legendre Module

numpy.polynomial.legendre.legline(off, scl)

2025-01-10 15:47:30
numpy.polynomial.laguerre.laggauss()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Laguerre Module

numpy.polynomial.laguerre.laggauss(deg)

2025-01-10 15:47:30
numpy.arange()
  • References/Python/NumPy/Routines/Array creation routines

numpy.arange([start, ]stop, [step, ]dtype=None) Return evenly spaced values within a given interval. Values are generated

2025-01-10 15:47:30
numpy.mgrid
  • References/Python/NumPy/Routines/Array creation routines

numpy.mgrid = nd_grid instance which returns a dense multi-dimensional ?meshgrid?. An instance of numpy

2025-01-10 15:47:30
RandomState.tomaxint()
  • References/Python/NumPy/Routines/Random sampling

RandomState.tomaxint(size=None) Random integers between 0 and sys.maxint, inclusive. Return

2025-01-10 15:47:30
numpy.linalg.pinv()
  • References/Python/NumPy/Routines/Linear algebra

numpy.linalg.pinv(a, rcond=1e-15)

2025-01-10 15:47:30
numpy.info()
  • References/Python/NumPy/Routines/NumPy-specific help functions

numpy.info(object=None, maxwidth=76, output=', mode 'w' at 0x402ae078>, toplevel='numpy')

2025-01-10 15:47:30
Chebyshev.convert()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Chebyshev Module

Chebyshev.convert(domain=None, kind=None, window=None)

2025-01-10 15:47:30