numpy.poly1d()
  • References/Python/NumPy/Routines/Polynomials/Poly1d

class numpy.poly1d(c_or_r, r=0, variable=None)

2025-01-10 15:47:30
numpy.cov()
  • References/Python/NumPy/Routines/Statistics

numpy.cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None)

2025-01-10 15:47:30
numpy.polynomial.laguerre.lagzero
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Laguerre Module

numpy.polynomial.laguerre.lagzero = array([0])

2025-01-10 15:47:30
Matrix library (numpy.matlib)
  • References/Python/NumPy/Routines

This module contains all functions in the numpy namespace, with the following replacement functions that return

2025-01-10 15:47:30
numpy.geterrobj()
  • References/Python/NumPy/Routines/Floating point error handling

numpy.geterrobj() Return the current object that defines floating-point error handling. The error object contains all

2025-01-10 15:47:30
numpy.subtract()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.subtract(x1, x2[, out]) = Subtract arguments, element-wise.

2025-01-10 15:47:30
chararray.view()
  • References/Python/NumPy/Routines/String operations/numpy.core.defchararray.chararray

chararray.view(dtype=None, type=None) New view of array with the same data.

2025-01-10 15:47:30
Data type routines
  • References/Python/NumPy/Routines

can_cast(from, totype, casting = ) Returns True if cast between data types can occur according to the casting rule. promote_types(type1, type2) Returns the data type with the smallest size and smallest scalar kind to which both type1 and type2 may be safely cast. min_scalar_type(a) For scalar a, returns the data type with the smallest size and smallest scalar kind which can hold its value. result_type(*arrays_and_dtypes) Returns the type that results from applying the NumPy type promotion

2025-01-10 15:47:30
numpy.ma.all()
  • References/Python/NumPy/Routines/Masked array operations

numpy.ma.all(self, axis=None, out=None) = Check if all of the elements of a are true. Performs a logical_and

2025-01-10 15:47:30
numpy.ldexp()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.ldexp(x1, x2[, out]) = Returns x1 * 2**x2, element-wise. The mantissas x1 and twos exponents x2

2025-01-10 15:47:30