numpy.mat()
  • References/Python/NumPy/Routines/Array creation routines

numpy.mat(data, dtype=None)

2025-01-10 15:47:30
Arrayterator.flat
  • References/Python/NumPy/Routines/Indexing routines/numpy.lib.Arrayterator

Arrayterator.flat A 1-D flat iterator for Arrayterator objects. This iterator returns elements of the array

2025-01-10 15:47:30
numpy.linalg.tensorinv()
  • References/Python/NumPy/Routines/Linear algebra

numpy.linalg.tensorinv(a, ind=2)

2025-01-10 15:47:30
numpy.matlib.repmat()
  • References/Python/NumPy/Routines/Matrix library

numpy.matlib.repmat(a, m, n)

2025-01-10 15:47:30
numpy.ma.std()
  • References/Python/NumPy/Routines/Masked array operations

numpy.ma.std(self, axis=None, dtype=None, out=None, ddof=0) = Compute the standard deviation along the specified axis. Returns

2025-01-10 15:47:30
numpy.random.pareto()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.pareto(a, size=None) Draw samples from a Pareto II or Lomax distribution with specified shape. The

2025-01-10 15:47:30
numpy.polynomial.laguerre.lagroots()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Laguerre Module

numpy.polynomial.laguerre.lagroots(c)

2025-01-10 15:47:30
chararray.flags
  • References/Python/NumPy/Routines/String operations/numpy.core.defchararray.chararray

chararray.flags Information about the memory layout of the array. Notes

2025-01-10 15:47:30
RandomState.beta()
  • References/Python/NumPy/Routines/Random sampling

RandomState.beta(a, b, size=None) Draw samples from a Beta distribution. The Beta distribution is a special

2025-01-10 15:47:30
numpy.random.triangular()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.triangular(left, mode, right, size=None) Draw samples from the triangular distribution. The triangular

2025-01-10 15:47:30