numpy.logaddexp2(x1, x2[, out]) = Logarithm of the sum of exponentiations of the inputs in base-2. Calculates log2(2**x1
numpy.cosh(x[, out]) = Hyperbolic cosine, element-wise. Equivalent to 1/2 * (np.exp(x) + np.exp(-x)) and np
numpy.rollaxis(a, axis, start=0)
chararray.real The real part of the array. See
class numpy.random.RandomState Container for the Mersenne Twister pseudo-random number generator.
numpy.random.standard_cauchy(size=None) Draw samples from a standard Cauchy distribution with mode = 0. Also
RandomState.exponential(scale=1.0, size=None) Draw samples from an exponential distribution. Its
numpy.histogramdd(sample, bins=10, range=None, normed=False, weights=None)
classmethod HermiteE.fromroots(roots, domain=[], window=None)
numpy.exp(x[, out]) = Calculate the exponential of all elements in the input array.
Page 72 of 100