numpy.logaddexp2()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.logaddexp2(x1, x2[, out]) = Logarithm of the sum of exponentiations of the inputs in base-2. Calculates log2(2**x1

2025-01-10 15:47:30
numpy.cosh()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.cosh(x[, out]) = Hyperbolic cosine, element-wise. Equivalent to 1/2 * (np.exp(x) + np.exp(-x)) and np

2025-01-10 15:47:30
numpy.rollaxis()
  • References/Python/NumPy/Routines/Array manipulation routines

numpy.rollaxis(a, axis, start=0)

2025-01-10 15:47:30
chararray.real
  • References/Python/NumPy/Routines/String operations/numpy.core.defchararray.chararray

chararray.real The real part of the array. See

2025-01-10 15:47:30
numpy.random.RandomState
  • References/Python/NumPy/Routines/Random sampling

class numpy.random.RandomState Container for the Mersenne Twister pseudo-random number generator.

2025-01-10 15:47:30
numpy.random.standard_cauchy()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.standard_cauchy(size=None) Draw samples from a standard Cauchy distribution with mode = 0. Also

2025-01-10 15:47:30
RandomState.exponential()
  • References/Python/NumPy/Routines/Random sampling

RandomState.exponential(scale=1.0, size=None) Draw samples from an exponential distribution. Its

2025-01-10 15:47:30
numpy.histogramdd()
  • References/Python/NumPy/Routines/Statistics

numpy.histogramdd(sample, bins=10, range=None, normed=False, weights=None)

2025-01-10 15:47:30
HermiteE.fromroots()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/HermiteE Module, “Probabilists’”

classmethod HermiteE.fromroots(roots, domain=[], window=None)

2025-01-10 15:47:30
numpy.exp()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.exp(x[, out]) = Calculate the exponential of all elements in the input array.

2025-01-10 15:47:30