numpy.ma.sort()
  • References/Python/NumPy/Routines/Masked array operations

numpy.ma.sort(a, axis=-1, kind='quicksort', order=None, endwith=True, fill_value=None)

2025-01-10 15:47:30
RandomState.lognormal()
  • References/Python/NumPy/Routines/Random sampling

RandomState.lognormal(mean=0.0, sigma=1.0, size=None) Draw samples from a log-normal distribution. Draw

2025-01-10 15:47:30
RandomState.laplace()
  • References/Python/NumPy/Routines/Random sampling

RandomState.laplace(loc=0.0, scale=1.0, size=None) Draw samples from the Laplace or double exponential distribution

2025-01-10 15:47:30
numpy.random.negative_binomial()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.negative_binomial(n, p, size=None) Draw samples from a negative binomial distribution. Samples

2025-01-10 15:47:30
numpy.issubclass_()
  • References/Python/NumPy/Routines/Data type routines

numpy.issubclass_(arg1, arg2)

2025-01-10 15:47:30
numpy.bmat()
  • References/Python/NumPy/Routines/Array creation routines

numpy.bmat(obj, ldict=None, gdict=None)

2025-01-10 15:47:30
numpy.getbuffer()
  • References/Python/NumPy/Routines/Miscellaneous routines

numpy.getbuffer(obj[, offset[, size]]) Create a buffer object from the given object referencing a slice of length size starting

2025-01-10 15:47:30
RandomState.chisquare()
  • References/Python/NumPy/Routines/Random sampling

RandomState.chisquare(df, size=None) Draw samples from a chi-square distribution. When df

2025-01-10 15:47:30
numpy.ma.getmaskarray()
  • References/Python/NumPy/Routines/Masked array operations

numpy.ma.getmaskarray(arr)

2025-01-10 15:47:30
numpy.nditer
  • References/Python/NumPy/Routines/Indexing routines

class numpy.nditer

2025-01-10 15:47:30