RandomState.laplace(loc=0.0, scale=1.0, size=None) Draw samples from the Laplace or double exponential distribution
MaskedArray.data Return the current data, as a view of the original underlying data.
numpy.ma.array(data, dtype=None, copy=False, order=None, mask=False, fill_value=None, keep_mask=True, hard_mask=False, shrink=True, subok=True, ndmin=0)
numpy.less(x1, x2[, out]) = Return the truth value of (x1 < x2) element-wise.
numpy.outer(a, b, out=None)
numpy.core.defchararray.ljust(a, width, fillchar=' ')
numpy.ma.allclose(a, b, masked_equal=True, rtol=1e-05, atol=1e-08)
numpy.random.seed(seed=None) Seed the generator. This method is called when
numpy.random.negative_binomial(n, p, size=None) Draw samples from a negative binomial distribution. Samples
numpy.polynomial.hermite.hermdiv(c1, c2)
Page 79 of 100