Legendre.cast()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Legendre Module

classmethod Legendre.cast(series, domain=None, window=None)

2025-01-10 15:47:30
HermiteE.integ()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/HermiteE Module, “Probabilists’”

HermiteE.integ(m=1, k=[], lbnd=None)

2025-01-10 15:47:30
numpy.random.laplace()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.laplace(loc=0.0, scale=1.0, size=None) Draw samples from the Laplace or double exponential distribution with

2025-01-10 15:47:30
numpy.nanstd()
  • References/Python/NumPy/Routines/Statistics

numpy.nanstd(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)

2025-01-10 15:47:30
numpy.polynomial.chebyshev.cheb2poly()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Chebyshev Module

numpy.polynomial.chebyshev.cheb2poly(c)

2025-01-10 15:47:30
numpy.polynomial.polynomial.polymul()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Polynomial Module

numpy.polynomial.polynomial.polymul(c1, c2)

2025-01-10 15:47:30
numpy.polynomial.hermite_e.hermeweight()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/HermiteE Module, “Probabilists’”

numpy.polynomial.hermite_e.hermeweight(x)

2025-01-10 15:47:30
numpy.corrcoef()
  • References/Python/NumPy/Routines/Statistics

numpy.corrcoef(x, y=None, rowvar=1, bias=, ddof=)

2025-01-10 15:47:30
numpy.ma.row_stack()
  • References/Python/NumPy/Routines/Masked array operations

numpy.ma.row_stack(tup) = Stack arrays in sequence vertically (row wise). Take a sequence of arrays and stack them vertically

2025-01-10 15:47:30
Chebyshev.identity()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Chebyshev Module

classmethod Chebyshev.identity(domain=None, window=None)

2025-01-10 15:47:30