numpy.polynomial.chebyshev.chebfit()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Chebyshev Module

numpy.polynomial.chebyshev.chebfit(x, y, deg, rcond=None, full=False, w=None)

2025-01-10 15:47:30
numpy.polynomial.hermite.hermgauss()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Hermite Module, “Physicists’”

numpy.polynomial.hermite.hermgauss(deg)

2025-01-10 15:47:30
numpy.linalg.LinAlgError
  • References/Python/NumPy/Routines/Linear algebra

exception numpy.linalg.LinAlgError

2025-01-10 15:47:30
Hermite.has_sametype()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Hermite Module, “Physicists’”

Hermite.has_sametype(other)

2025-01-10 15:47:30
numpy.ma.innerproduct()
  • References/Python/NumPy/Routines/Masked array operations

numpy.ma.innerproduct(a, b)

2025-01-10 15:47:30
numpy.set_printoptions()
  • References/Python/NumPy/Routines/Input and output

numpy.set_printoptions(precision=None, threshold=None, edgeitems=None, linewidth=None, suppress=None, nanstr=None, infstr=None, formatter=None)

2025-01-10 15:47:30
numpy.dot()
  • References/Python/NumPy/Routines/Linear algebra

numpy.dot(a, b, out=None) Dot product of two arrays. For 2-D arrays it is equivalent to matrix multiplication, and for 1-D

2025-01-10 15:47:30
numpy.linalg.solve()
  • References/Python/NumPy/Routines/Linear algebra

numpy.linalg.solve(a, b)

2025-01-10 15:47:30
numpy.polynomial.chebyshev.chebzero
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Chebyshev Module

numpy.polynomial.chebyshev.chebzero = array([0])

2025-01-10 15:47:30
numpy.polynomial.hermite.hermweight()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Hermite Module, “Physicists’”

numpy.polynomial.hermite.hermweight(x)

2025-01-10 15:47:30