numpy.arctan()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.arctan(x[, out]) = Trigonometric inverse tangent, element-wise. The inverse of tan, so that if y = tan(x)

2025-01-10 15:47:30
numpy.sin()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.sin(x[, out]) = Trigonometric sine, element-wise.

2025-01-10 15:47:30
numpy.arcsin()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.arcsin(x[, out]) = Inverse sine, element-wise.

2025-01-10 15:47:30
numpy.imag()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.imag(val)

2025-01-10 15:47:30
numpy.rad2deg()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.rad2deg(x[, out]) = Convert angles from radians to degrees.

2025-01-10 15:47:30
numpy.power()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.power(x1, x2[, out]) = First array elements raised to powers from second array, element-wise. Raise each base in x1

2025-01-10 15:47:30
numpy.logaddexp()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.logaddexp(x1, x2[, out]) = Logarithm of the sum of exponentiations of the inputs. Calculates log(exp(x1) +

2025-01-10 15:47:30
numpy.floor_divide()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.floor_divide(x1, x2[, out]) = Return the largest integer smaller or equal to the division of the inputs. It is equivalent

2025-01-10 15:47:30
numpy.angle()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.angle(z, deg=0)

2025-01-10 15:47:30
numpy.fmod()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.fmod(x1, x2[, out]) = Return the element-wise remainder of division. This is the NumPy implementation of the C library

2025-01-10 15:47:30