numpy.copysign()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.copysign(x1, x2[, out]) = Change the sign of x1 to that of x2, element-wise. If both arguments are arrays or sequences

2025-01-10 15:47:30
numpy.prod()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.prod(a, axis=None, dtype=None, out=None, keepdims=False)

2025-01-10 15:47:30
numpy.fix()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.fix(x, y=None)

2025-01-10 15:47:30
numpy.tan()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.tan(x[, out]) = Compute tangent element-wise. Equivalent to np.sin(x)/np.cos(x) element-wise.

2025-01-10 15:47:30
numpy.angle()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.angle(z, deg=0)

2025-01-10 15:47:30
numpy.fmod()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.fmod(x1, x2[, out]) = Return the element-wise remainder of division. This is the NumPy implementation of the C library

2025-01-10 15:47:30
numpy.sum()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.sum(a, axis=None, dtype=None, out=None, keepdims=False)

2025-01-10 15:47:30
numpy.floor_divide()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.floor_divide(x1, x2[, out]) = Return the largest integer smaller or equal to the division of the inputs. It is equivalent

2025-01-10 15:47:30
numpy.arctan2()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.arctan2(x1, x2[, out]) = Element-wise arc tangent of x1/x2 choosing the quadrant correctly. The quadrant

2025-01-10 15:47:30
numpy.cumsum()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.cumsum(a, axis=None, dtype=None, out=None)

2025-01-10 15:47:30