numpy.maximum()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.maximum(x1, x2[, out]) = Element-wise maximum of array elements. Compare two arrays and returns a new array containing

2025-01-10 15:47:30
numpy.sqrt()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.sqrt(x[, out]) = Return the positive square-root of an array, element-wise.

2025-01-10 15:47:30
numpy.unwrap()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.unwrap(p, discont=3.141592653589793, axis=-1)

2025-01-10 15:47:30
numpy.clip()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.clip(a, a_min, a_max, out=None)

2025-01-10 15:47:30
numpy.log2()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.log2(x[, out]) = Base-2 logarithm of x.

2025-01-10 15:47:30
numpy.mod()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.mod(x1, x2[, out]) = Return element-wise remainder of division. Computes the remainder complementary to the

2025-01-10 15:47:30
numpy.rint()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.rint(x[, out]) = Round elements of the array to the nearest integer.

2025-01-10 15:47:30
numpy.exp()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.exp(x[, out]) = Calculate the exponential of all elements in the input array.

2025-01-10 15:47:30
numpy.log()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.log(x[, out]) = Natural logarithm, element-wise. The natural logarithm

2025-01-10 15:47:30
numpy.square()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.square(x[, out]) = Return the element-wise square of the input.

2025-01-10 15:47:30