numpy.clip()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.clip(a, a_min, a_max, out=None)

2025-01-10 15:47:30
numpy.arcsinh()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.arcsinh(x[, out]) = Inverse hyperbolic sine element-wise.

2025-01-10 15:47:30
numpy.maximum()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.maximum(x1, x2[, out]) = Element-wise maximum of array elements. Compare two arrays and returns a new array containing

2025-01-10 15:47:30
numpy.rint()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.rint(x[, out]) = Round elements of the array to the nearest integer.

2025-01-10 15:47:30
numpy.unwrap()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.unwrap(p, discont=3.141592653589793, axis=-1)

2025-01-10 15:47:30
numpy.sqrt()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.sqrt(x[, out]) = Return the positive square-root of an array, element-wise.

2025-01-10 15:47:30
numpy.logaddexp2()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.logaddexp2(x1, x2[, out]) = Logarithm of the sum of exponentiations of the inputs in base-2. Calculates log2(2**x1

2025-01-10 15:47:30
numpy.cosh()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.cosh(x[, out]) = Hyperbolic cosine, element-wise. Equivalent to 1/2 * (np.exp(x) + np.exp(-x)) and np

2025-01-10 15:47:30
numpy.exp()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.exp(x[, out]) = Calculate the exponential of all elements in the input array.

2025-01-10 15:47:30
numpy.cos()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.cos(x[, out]) = Cosine element-wise.

2025-01-10 15:47:30