numpy.sinh()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.sinh(x[, out]) = Hyperbolic sine, element-wise. Equivalent to 1/2 * (np.exp(x) - np.exp(-x)) or -1j

2025-01-10 15:47:30
numpy.expm1()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.expm1(x[, out]) = Calculate exp(x) - 1 for all elements in the array.

2025-01-10 15:47:30
numpy.tanh()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.tanh(x[, out]) = Compute hyperbolic tangent element-wise. Equivalent to np.sinh(x)/np.cosh(x) or -1j

2025-01-10 15:47:30
numpy.frexp()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.frexp(x[, out1, out2]) = Decompose the elements of x into mantissa and twos exponent. Returns (mantissa

2025-01-10 15:47:30
numpy.log1p()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.log1p(x[, out]) = Return the natural logarithm of one plus the input array, element-wise. Calculates log(1 + x)

2025-01-10 15:47:30
numpy.nan_to_num()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.nan_to_num(x)

2025-01-10 15:47:30
numpy.cos()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.cos(x[, out]) = Cosine element-wise.

2025-01-10 15:47:30
numpy.cosh()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.cosh(x[, out]) = Hyperbolic cosine, element-wise. Equivalent to 1/2 * (np.exp(x) + np.exp(-x)) and np

2025-01-10 15:47:30
numpy.logaddexp2()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.logaddexp2(x1, x2[, out]) = Logarithm of the sum of exponentiations of the inputs in base-2. Calculates log2(2**x1

2025-01-10 15:47:30
numpy.arcsinh()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.arcsinh(x[, out]) = Inverse hyperbolic sine element-wise.

2025-01-10 15:47:30