numpy.trapz()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.trapz(y, x=None, dx=1.0, axis=-1)

2025-01-10 15:47:30
numpy.minimum()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.minimum(x1, x2[, out]) = Element-wise minimum of array elements. Compare two arrays and returns a new array containing

2025-01-10 15:47:30
numpy.log2()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.log2(x[, out]) = Base-2 logarithm of x.

2025-01-10 15:47:30
numpy.square()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.square(x[, out]) = Return the element-wise square of the input.

2025-01-10 15:47:30
numpy.exp()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.exp(x[, out]) = Calculate the exponential of all elements in the input array.

2025-01-10 15:47:30
numpy.logaddexp2()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.logaddexp2(x1, x2[, out]) = Logarithm of the sum of exponentiations of the inputs in base-2. Calculates log2(2**x1

2025-01-10 15:47:30
numpy.cos()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.cos(x[, out]) = Cosine element-wise.

2025-01-10 15:47:30
numpy.cosh()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.cosh(x[, out]) = Hyperbolic cosine, element-wise. Equivalent to 1/2 * (np.exp(x) + np.exp(-x)) and np

2025-01-10 15:47:30
numpy.sqrt()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.sqrt(x[, out]) = Return the positive square-root of an array, element-wise.

2025-01-10 15:47:30
numpy.tanh()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.tanh(x[, out]) = Compute hyperbolic tangent element-wise. Equivalent to np.sinh(x)/np.cosh(x) or -1j

2025-01-10 15:47:30