numpy.minimum(x1, x2[, out]) = Element-wise minimum of array elements. Compare two arrays and returns a new array containing
numpy.interp(x, xp, fp, left=None, right=None, period=None)
numpy.log2(x[, out]) = Base-2 logarithm of x.
numpy.rint(x[, out]) = Round elements of the array to the nearest integer.
numpy.logaddexp2(x1, x2[, out]) = Logarithm of the sum of exponentiations of the inputs in base-2. Calculates log2(2**x1
numpy.arcsinh(x[, out]) = Inverse hyperbolic sine element-wise.
numpy.mod(x1, x2[, out]) = Return element-wise remainder of division. Computes the remainder complementary to the
numpy.exp(x[, out]) = Calculate the exponential of all elements in the input array.
numpy.log1p(x[, out]) = Return the natural logarithm of one plus the input array, element-wise. Calculates log(1 + x)
numpy.clip(a, a_min, a_max, out=None)
Page 4 of 9