numpy.trapz()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.trapz(y, x=None, dx=1.0, axis=-1)

2025-01-10 15:47:30
numpy.interp()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.interp(x, xp, fp, left=None, right=None, period=None)

2025-01-10 15:47:30
numpy.square()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.square(x[, out]) = Return the element-wise square of the input.

2025-01-10 15:47:30
numpy.nan_to_num()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.nan_to_num(x)

2025-01-10 15:47:30
numpy.maximum()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.maximum(x1, x2[, out]) = Element-wise maximum of array elements. Compare two arrays and returns a new array containing

2025-01-10 15:47:30
numpy.frexp()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.frexp(x[, out1, out2]) = Decompose the elements of x into mantissa and twos exponent. Returns (mantissa

2025-01-10 15:47:30
numpy.cosh()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.cosh(x[, out]) = Hyperbolic cosine, element-wise. Equivalent to 1/2 * (np.exp(x) + np.exp(-x)) and np

2025-01-10 15:47:30
numpy.log()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.log(x[, out]) = Natural logarithm, element-wise. The natural logarithm

2025-01-10 15:47:30
numpy.mod()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.mod(x1, x2[, out]) = Return element-wise remainder of division. Computes the remainder complementary to the

2025-01-10 15:47:30
numpy.cos()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.cos(x[, out]) = Cosine element-wise.

2025-01-10 15:47:30