numpy.random.random()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.random(size=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the

2025-01-10 15:47:30
numpy.random.uniform()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.uniform(low=0.0, high=1.0, size=None) Draw samples from a uniform distribution. Samples are uniformly

2025-01-10 15:47:30
RandomState.standard_t()
  • References/Python/NumPy/Routines/Random sampling

RandomState.standard_t(df, size=None) Draw samples from a standard Student?s t distribution with df

2025-01-10 15:47:30
numpy.random.multivariate_normal()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.multivariate_normal(mean, cov[, size]) Draw random samples from a multivariate normal distribution

2025-01-10 15:47:30
numpy.random.lognormal()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.lognormal(mean=0.0, sigma=1.0, size=None) Draw samples from a log-normal distribution. Draw samples

2025-01-10 15:47:30
RandomState.noncentral_f()
  • References/Python/NumPy/Routines/Random sampling

RandomState.noncentral_f(dfnum, dfden, nonc, size=None) Draw samples from the noncentral F distribution

2025-01-10 15:47:30
numpy.random.multinomial()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.multinomial(n, pvals, size=None) Draw samples from a multinomial distribution. The multinomial

2025-01-10 15:47:30
RandomState.permutation()
  • References/Python/NumPy/Routines/Random sampling

RandomState.permutation(x) Randomly permute a sequence, or return a permuted range. If x

2025-01-10 15:47:30
RandomState.vonmises()
  • References/Python/NumPy/Routines/Random sampling

RandomState.vonmises(mu, kappa, size=None) Draw samples from a von Mises distribution. Samples are drawn

2025-01-10 15:47:30