RandomState.seed()
  • References/Python/NumPy/Routines/Random sampling

RandomState.seed(seed=None) Seed the generator. This method is called when

2025-01-10 15:47:30
numpy.random.noncentral_chisquare()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.noncentral_chisquare(df, nonc, size=None) Draw samples from a noncentral chi-square distribution

2025-01-10 15:47:30
numpy.random.multivariate_normal()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.multivariate_normal(mean, cov[, size]) Draw random samples from a multivariate normal distribution

2025-01-10 15:47:30
numpy.random.lognormal()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.lognormal(mean=0.0, sigma=1.0, size=None) Draw samples from a log-normal distribution. Draw samples

2025-01-10 15:47:30
numpy.random.ranf()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.ranf(size=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the ?continuous

2025-01-10 15:47:30
numpy.random.random()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.random(size=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the

2025-01-10 15:47:30
numpy.random.bytes()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.bytes(length) Return random bytes.

2025-01-10 15:47:30
RandomState.noncentral_f()
  • References/Python/NumPy/Routines/Random sampling

RandomState.noncentral_f(dfnum, dfden, nonc, size=None) Draw samples from the noncentral F distribution

2025-01-10 15:47:30
RandomState.normal()
  • References/Python/NumPy/Routines/Random sampling

RandomState.normal(loc=0.0, scale=1.0, size=None) Draw random samples from a normal (Gaussian) distribution.

2025-01-10 15:47:30