numpy.random.choice()

numpy.random.choice(a, size=None, replace=True, p=None) Generates a random sample from a given 1-D array

2017-01-10 18:17:59
numpy.random.ranf()

numpy.random.ranf(size=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the ?continuous

2017-01-10 18:18:14
RandomState.standard_t()

RandomState.standard_t(df, size=None) Draw samples from a standard Student?s t distribution with df

2017-01-10 18:19:49
RandomState.vonmises()

RandomState.vonmises(mu, kappa, size=None) Draw samples from a von Mises distribution. Samples are drawn

2017-01-10 18:19:51
numpy.random.randn()

numpy.random.randn(d0, d1, ..., dn) Return a sample (or samples) from the ?standard normal? distribution. If positive

2017-01-10 18:18:11
numpy.random.random()

numpy.random.random(size=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the

2017-01-10 18:18:11
RandomState.normal()

RandomState.normal(loc=0.0, scale=1.0, size=None) Draw random samples from a normal (Gaussian) distribution.

2017-01-10 18:19:41
RandomState.noncentral_f()

RandomState.noncentral_f(dfnum, dfden, nonc, size=None) Draw samples from the noncentral F distribution

2017-01-10 18:19:40
RandomState.power()

RandomState.power(a, size=None) Draws samples in [0, 1] from a power distribution with positive exponent a - 1

2017-01-10 18:19:43
numpy.random.multivariate_normal()

numpy.random.multivariate_normal(mean, cov[, size]) Draw random samples from a multivariate normal distribution

2017-01-10 18:18:06