numpy.random.noncentral_chisquare()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.noncentral_chisquare(df, nonc, size=None) Draw samples from a noncentral chi-square distribution

2025-01-10 15:47:30
RandomState.seed()
  • References/Python/NumPy/Routines/Random sampling

RandomState.seed(seed=None) Seed the generator. This method is called when

2025-01-10 15:47:30
numpy.random.poisson()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.poisson(lam=1.0, size=None) Draw samples from a Poisson distribution. The Poisson distribution is

2025-01-10 15:47:30
numpy.random.ranf()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.ranf(size=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the ?continuous

2025-01-10 15:47:30
RandomState.normal()
  • References/Python/NumPy/Routines/Random sampling

RandomState.normal(loc=0.0, scale=1.0, size=None) Draw random samples from a normal (Gaussian) distribution.

2025-01-10 15:47:30
numpy.random.bytes()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.bytes(length) Return random bytes.

2025-01-10 15:47:30
RandomState.rand()
  • References/Python/NumPy/Routines/Random sampling

RandomState.rand(d0, d1, ..., dn) Random values in a given shape. Create an array of the given shape and

2025-01-10 15:47:30
numpy.random.randn()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.randn(d0, d1, ..., dn) Return a sample (or samples) from the ?standard normal? distribution. If positive

2025-01-10 15:47:30
numpy.random.choice()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.choice(a, size=None, replace=True, p=None) Generates a random sample from a given 1-D array

2025-01-10 15:47:30
RandomState.power()
  • References/Python/NumPy/Routines/Random sampling

RandomState.power(a, size=None) Draws samples in [0, 1] from a power distribution with positive exponent a - 1

2025-01-10 15:47:30