RandomState.multinomial()
  • References/Python/NumPy/Routines/Random sampling

RandomState.multinomial(n, pvals, size=None) Draw samples from a multinomial distribution. The multinomial

2025-01-10 15:47:30
RandomState.standard_exponential()
  • References/Python/NumPy/Routines/Random sampling

RandomState.standard_exponential(size=None) Draw samples from the standard exponential distribution

2025-01-10 15:47:30
RandomState.chisquare()
  • References/Python/NumPy/Routines/Random sampling

RandomState.chisquare(df, size=None) Draw samples from a chi-square distribution. When df

2025-01-10 15:47:30
numpy.random.seed()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.seed(seed=None) Seed the generator. This method is called when

2025-01-10 15:47:30
RandomState.zipf()
  • References/Python/NumPy/Routines/Random sampling

RandomState.zipf(a, size=None) Draw samples from a Zipf distribution. Samples are drawn from a Zipf distribution

2025-01-10 15:47:30
numpy.random.negative_binomial()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.negative_binomial(n, p, size=None) Draw samples from a negative binomial distribution. Samples

2025-01-10 15:47:30
RandomState.laplace()
  • References/Python/NumPy/Routines/Random sampling

RandomState.laplace(loc=0.0, scale=1.0, size=None) Draw samples from the Laplace or double exponential distribution

2025-01-10 15:47:30
numpy.random.gamma()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.gamma(shape, scale=1.0, size=None) Draw samples from a Gamma distribution. Samples are drawn from a

2025-01-10 15:47:30
RandomState.lognormal()
  • References/Python/NumPy/Routines/Random sampling

RandomState.lognormal(mean=0.0, sigma=1.0, size=None) Draw samples from a log-normal distribution. Draw

2025-01-10 15:47:30
RandomState.vonmises()
  • References/Python/NumPy/Routines/Random sampling

RandomState.vonmises(mu, kappa, size=None) Draw samples from a von Mises distribution. Samples are drawn

2025-01-10 15:47:30