RandomState.zipf()

RandomState.zipf(a, size=None) Draw samples from a Zipf distribution. Samples are drawn from a Zipf distribution

2017-01-10 18:19:52
RandomState.standard_exponential()

RandomState.standard_exponential(size=None) Draw samples from the standard exponential distribution

2017-01-10 18:19:48
RandomState.f()

RandomState.f(dfnum, dfden, size=None) Draw samples from an F distribution. Samples are drawn from an F distribution

2017-01-10 18:19:34
RandomState.randn()

RandomState.randn(d0, d1, ..., dn) Return a sample (or samples) from the ?standard normal? distribution. If

2017-01-10 18:19:44
RandomState.lognormal()

RandomState.lognormal(mean=0.0, sigma=1.0, size=None) Draw samples from a log-normal distribution. Draw

2017-01-10 18:19:38
RandomState.multivariate_normal()

RandomState.multivariate_normal(mean, cov[, size]) Draw random samples from a multivariate normal

2017-01-10 18:19:39
numpy.random.laplace()

numpy.random.laplace(loc=0.0, scale=1.0, size=None) Draw samples from the Laplace or double exponential distribution with

2017-01-10 18:18:04
numpy.random.zipf()

numpy.random.zipf(a, size=None) Draw samples from a Zipf distribution. Samples are drawn from a Zipf distribution

2017-01-10 18:18:21
RandomState.multinomial()

RandomState.multinomial(n, pvals, size=None) Draw samples from a multinomial distribution. The multinomial

2017-01-10 18:19:39
numpy.random.noncentral_chisquare()

numpy.random.noncentral_chisquare(df, nonc, size=None) Draw samples from a noncentral chi-square distribution

2017-01-10 18:18:07