numpy.random.random_integers()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.random_integers(low, high=None, size=None) Random integers of type np.int between low

2025-01-10 15:47:30
RandomState.exponential()
  • References/Python/NumPy/Routines/Random sampling

RandomState.exponential(scale=1.0, size=None) Draw samples from an exponential distribution. Its

2025-01-10 15:47:30
numpy.random.pareto()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.pareto(a, size=None) Draw samples from a Pareto II or Lomax distribution with specified shape. The

2025-01-10 15:47:30
RandomState.get_state()
  • References/Python/NumPy/Routines/Random sampling

RandomState.get_state() Return a tuple representing the internal state of the generator. For more details

2025-01-10 15:47:30
numpy.random.RandomState
  • References/Python/NumPy/Routines/Random sampling

class numpy.random.RandomState Container for the Mersenne Twister pseudo-random number generator.

2025-01-10 15:47:30
numpy.random.rand()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.rand(d0, d1, ..., dn) Random values in a given shape. Create an array of the given shape and populate

2025-01-10 15:47:30
numpy.random.randint()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.randint(low, high=None, size=None, dtype='l') Return random integers from low (inclusive) to

2025-01-10 15:47:30
RandomState.shuffle()
  • References/Python/NumPy/Routines/Random sampling

RandomState.shuffle(x) Modify a sequence in-place by shuffling its contents.

2025-01-10 15:47:30
RandomState.standard_normal()
  • References/Python/NumPy/Routines/Random sampling

RandomState.standard_normal(size=None) Draw samples from a standard Normal distribution (mean=0, stdev=1)

2025-01-10 15:47:30
numpy.random.triangular()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.triangular(left, mode, right, size=None) Draw samples from the triangular distribution. The triangular

2025-01-10 15:47:30