numpy.random.standard_gamma()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.standard_gamma(shape, size=None) Draw samples from a standard Gamma distribution. Samples are

2025-01-10 15:47:30
RandomState.logseries()
  • References/Python/NumPy/Routines/Random sampling

RandomState.logseries(p, size=None) Draw samples from a logarithmic series distribution. Samples are

2025-01-10 15:47:30
RandomState.shuffle()
  • References/Python/NumPy/Routines/Random sampling

RandomState.shuffle(x) Modify a sequence in-place by shuffling its contents.

2025-01-10 15:47:30
numpy.random.exponential()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.exponential(scale=1.0, size=None) Draw samples from an exponential distribution. Its probability

2025-01-10 15:47:30
numpy.random.RandomState
  • References/Python/NumPy/Routines/Random sampling

class numpy.random.RandomState Container for the Mersenne Twister pseudo-random number generator.

2025-01-10 15:47:30
RandomState.weibull()
  • References/Python/NumPy/Routines/Random sampling

RandomState.weibull(a, size=None) Draw samples from a Weibull distribution. Draw samples from a 1-parameter

2025-01-10 15:47:30
RandomState.bytes()
  • References/Python/NumPy/Routines/Random sampling

RandomState.bytes(length) Return random bytes.

2025-01-10 15:47:30
RandomState.standard_normal()
  • References/Python/NumPy/Routines/Random sampling

RandomState.standard_normal(size=None) Draw samples from a standard Normal distribution (mean=0, stdev=1)

2025-01-10 15:47:30
RandomState.exponential()
  • References/Python/NumPy/Routines/Random sampling

RandomState.exponential(scale=1.0, size=None) Draw samples from an exponential distribution. Its

2025-01-10 15:47:30
numpy.random.sample()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.sample(size=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the

2025-01-10 15:47:30