numpy.random.standard_gamma()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.standard_gamma(shape, size=None) Draw samples from a standard Gamma distribution. Samples are

2025-01-10 15:47:30
numpy.random.vonmises()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.vonmises(mu, kappa, size=None) Draw samples from a von Mises distribution. Samples are drawn from

2025-01-10 15:47:30
RandomState.get_state()
  • References/Python/NumPy/Routines/Random sampling

RandomState.get_state() Return a tuple representing the internal state of the generator. For more details

2025-01-10 15:47:30
numpy.random.dirichlet()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.dirichlet(alpha, size=None) Draw samples from the Dirichlet distribution. Draw size

2025-01-10 15:47:30
RandomState.beta()
  • References/Python/NumPy/Routines/Random sampling

RandomState.beta(a, b, size=None) Draw samples from a Beta distribution. The Beta distribution is a special

2025-01-10 15:47:30
RandomState.shuffle()
  • References/Python/NumPy/Routines/Random sampling

RandomState.shuffle(x) Modify a sequence in-place by shuffling its contents.

2025-01-10 15:47:30
RandomState.bytes()
  • References/Python/NumPy/Routines/Random sampling

RandomState.bytes(length) Return random bytes.

2025-01-10 15:47:30
numpy.random.pareto()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.pareto(a, size=None) Draw samples from a Pareto II or Lomax distribution with specified shape. The

2025-01-10 15:47:30
numpy.random.power()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.power(a, size=None) Draws samples in [0, 1] from a power distribution with positive exponent a - 1. Also

2025-01-10 15:47:30
numpy.random.standard_cauchy()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.standard_cauchy(size=None) Draw samples from a standard Cauchy distribution with mode = 0. Also

2025-01-10 15:47:30