numpy.random.exponential()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.exponential(scale=1.0, size=None) Draw samples from an exponential distribution. Its probability

2025-01-10 15:47:30
numpy.random.noncentral_f()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.noncentral_f(dfnum, dfden, nonc, size=None) Draw samples from the noncentral F distribution. Samples

2025-01-10 15:47:30
numpy.random.rand()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.rand(d0, d1, ..., dn) Random values in a given shape. Create an array of the given shape and populate

2025-01-10 15:47:30
RandomState.exponential()
  • References/Python/NumPy/Routines/Random sampling

RandomState.exponential(scale=1.0, size=None) Draw samples from an exponential distribution. Its

2025-01-10 15:47:30
RandomState.randint()
  • References/Python/NumPy/Routines/Random sampling

RandomState.randint(low, high=None, size=None, dtype='l') Return random integers from low (inclusive)

2025-01-10 15:47:30
numpy.random.sample()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.sample(size=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the

2025-01-10 15:47:30
RandomState.get_state()
  • References/Python/NumPy/Routines/Random sampling

RandomState.get_state() Return a tuple representing the internal state of the generator. For more details

2025-01-10 15:47:30
RandomState.shuffle()
  • References/Python/NumPy/Routines/Random sampling

RandomState.shuffle(x) Modify a sequence in-place by shuffling its contents.

2025-01-10 15:47:30
RandomState.randn()
  • References/Python/NumPy/Routines/Random sampling

RandomState.randn(d0, d1, ..., dn) Return a sample (or samples) from the ?standard normal? distribution. If

2025-01-10 15:47:30
RandomState.lognormal()
  • References/Python/NumPy/Routines/Random sampling

RandomState.lognormal(mean=0.0, sigma=1.0, size=None) Draw samples from a log-normal distribution. Draw

2025-01-10 15:47:30