RandomState.laplace()
  • References/Python/NumPy/Routines/Random sampling

RandomState.laplace(loc=0.0, scale=1.0, size=None) Draw samples from the Laplace or double exponential distribution

2025-01-10 15:47:30
numpy.random.negative_binomial()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.negative_binomial(n, p, size=None) Draw samples from a negative binomial distribution. Samples

2025-01-10 15:47:30
RandomState.chisquare()
  • References/Python/NumPy/Routines/Random sampling

RandomState.chisquare(df, size=None) Draw samples from a chi-square distribution. When df

2025-01-10 15:47:30
numpy.random.seed()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.seed(seed=None) Seed the generator. This method is called when

2025-01-10 15:47:30
numpy.random.rayleigh()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.rayleigh(scale=1.0, size=None) Draw samples from a Rayleigh distribution. The

2025-01-10 15:47:30
RandomState.multivariate_normal()
  • References/Python/NumPy/Routines/Random sampling

RandomState.multivariate_normal(mean, cov[, size]) Draw random samples from a multivariate normal

2025-01-10 15:47:30
RandomState.standard_exponential()
  • References/Python/NumPy/Routines/Random sampling

RandomState.standard_exponential(size=None) Draw samples from the standard exponential distribution

2025-01-10 15:47:30
numpy.random.weibull()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.weibull(a, size=None) Draw samples from a Weibull distribution. Draw samples from a 1-parameter Weibull

2025-01-10 15:47:30
RandomState.wald()
  • References/Python/NumPy/Routines/Random sampling

RandomState.wald(mean, scale, size=None) Draw samples from a Wald, or inverse Gaussian, distribution. As

2025-01-10 15:47:30
numpy.random.chisquare()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.chisquare(df, size=None) Draw samples from a chi-square distribution. When df independent

2025-01-10 15:47:30