RandomState.noncentral_chisquare()
  • References/Python/NumPy/Routines/Random sampling

RandomState.noncentral_chisquare(df, nonc, size=None) Draw samples from a noncentral chi-square

2025-01-10 15:47:30
numpy.random.shuffle()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.shuffle(x) Modify a sequence in-place by shuffling its contents.

2025-01-10 15:47:30
numpy.random.get_state()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.get_state() Return a tuple representing the internal state of the generator. For more details, see

2025-01-10 15:47:30
RandomState.logseries()
  • References/Python/NumPy/Routines/Random sampling

RandomState.logseries(p, size=None) Draw samples from a logarithmic series distribution. Samples are

2025-01-10 15:47:30
numpy.random.f()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.f(dfnum, dfden, size=None) Draw samples from an F distribution. Samples are drawn from an F distribution

2025-01-10 15:47:30
RandomState.negative_binomial()
  • References/Python/NumPy/Routines/Random sampling

RandomState.negative_binomial(n, p, size=None) Draw samples from a negative binomial distribution

2025-01-10 15:47:30
numpy.random.geometric()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.geometric(p, size=None) Draw samples from the geometric distribution. Bernoulli trials are experiments

2025-01-10 15:47:30
numpy.random.standard_exponential()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.standard_exponential(size=None) Draw samples from the standard exponential distribution.

2025-01-10 15:47:30
RandomState.rayleigh()
  • References/Python/NumPy/Routines/Random sampling

RandomState.rayleigh(scale=1.0, size=None) Draw samples from a Rayleigh distribution. The

2025-01-10 15:47:30
RandomState.dirichlet()
  • References/Python/NumPy/Routines/Random sampling

RandomState.dirichlet(alpha, size=None) Draw samples from the Dirichlet distribution. Draw size

2025-01-10 15:47:30