RandomState.standard_cauchy()
  • References/Python/NumPy/Routines/Random sampling

RandomState.standard_cauchy(size=None) Draw samples from a standard Cauchy distribution with mode =

2025-01-10 15:47:30
numpy.random.standard_normal()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.standard_normal(size=None) Draw samples from a standard Normal distribution (mean=0, stdev=1).

2025-01-10 15:47:30
numpy.random.beta()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.beta(a, b, size=None) Draw samples from a Beta distribution. The Beta distribution is a special case

2025-01-10 15:47:30
RandomState.logistic()
  • References/Python/NumPy/Routines/Random sampling

RandomState.logistic(loc=0.0, scale=1.0, size=None) Draw samples from a logistic distribution. Samples

2025-01-10 15:47:30
numpy.random.logistic()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.logistic(loc=0.0, scale=1.0, size=None) Draw samples from a logistic distribution. Samples are drawn

2025-01-10 15:47:30
numpy.random.shuffle()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.shuffle(x) Modify a sequence in-place by shuffling its contents.

2025-01-10 15:47:30
numpy.random.wald()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.wald(mean, scale, size=None) Draw samples from a Wald, or inverse Gaussian, distribution. As the scale

2025-01-10 15:47:30
RandomState.random_integers()
  • References/Python/NumPy/Routines/Random sampling

RandomState.random_integers(low, high=None, size=None) Random integers of type np.int between low

2025-01-10 15:47:30
numpy.random.geometric()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.geometric(p, size=None) Draw samples from the geometric distribution. Bernoulli trials are experiments

2025-01-10 15:47:30
RandomState.noncentral_chisquare()
  • References/Python/NumPy/Routines/Random sampling

RandomState.noncentral_chisquare(df, nonc, size=None) Draw samples from a noncentral chi-square

2025-01-10 15:47:30