sklearn.metrics.label_ranking_loss()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.label_ranking_loss(y_true, y_score, sample_weight=None)

2025-01-10 15:47:30
Comparing different clustering algorithms on toy datasets
  • References/Python/scikit-learn/Examples/Clustering

This example aims at showing characteristics of different clustering algorithms on datasets that are ?interesting? but still in 2D

2025-01-10 15:47:30
Scaling the regularization parameter for SVCs
  • References/Python/scikit-learn/Examples/Support Vector Machines

The following example illustrates the effect of scaling the regularization parameter when using

2025-01-10 15:47:30
sklearn.datasets.make_regression()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_regression(n_samples=100, n_features=100, n_informative=10, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0

2025-01-10 15:47:30
cluster.bicluster.SpectralBiclustering()
  • References/Python/scikit-learn/API Reference/cluster

class sklearn.cluster.bicluster.SpectralBiclustering(n_clusters=3, method='bistochastic', n_components=6, n_best=3,

2025-01-10 15:47:30
Precision-Recall
  • References/Python/scikit-learn/Examples/Model Selection

Example of Precision-Recall metric to evaluate classifier output quality. In information retrieval, precision is a measure of result relevancy, while recall is a measure

2025-01-10 15:47:30
sklearn.cross_validation.permutation_test_score()
  • References/Python/scikit-learn/API Reference/cross_validation

Warning DEPRECATED

2025-01-10 15:47:30
sklearn.datasets.make_moons()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_moons(n_samples=100, shuffle=True, noise=None, random_state=None)

2025-01-10 15:47:30
Confusion matrix
  • References/Python/scikit-learn/Examples/Model Selection

Example of confusion matrix usage to evaluate the quality of the output of a classifier on the iris data set. The diagonal elements represent the number of points for which

2025-01-10 15:47:30
Support Vector Regression using linear and non-linear kernels
  • References/Python/scikit-learn/Examples/Support Vector Machines

Toy example of 1D regression using linear, polynomial and RBF kernels. print(__doc__)

2025-01-10 15:47:30