sklearn.datasets.make_circles()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_circles(n_samples=100, shuffle=True, noise=None, random_state=None, factor=0.8)

2025-01-10 15:47:30
gaussian_process.kernels.WhiteKernel()
  • References/Python/scikit-learn/API Reference/gaussian_process

class sklearn.gaussian_process.kernels.WhiteKernel(noise_level=1.0, noise_level_bounds=(1e-05, 100000.0))

2025-01-10 15:47:30
Compare BIRCH and MiniBatchKMeans
  • References/Python/scikit-learn/Examples/Clustering

This example compares the timing of Birch (with and without the global clustering step) and MiniBatchKMeans on a synthetic dataset having 100,000 samples and

2025-01-10 15:47:30
base.ClassifierMixin
  • References/Python/scikit-learn/API Reference/base

class sklearn.base.ClassifierMixin

2025-01-10 15:47:30
cluster.bicluster.SpectralBiclustering()
  • References/Python/scikit-learn/API Reference/cluster

class sklearn.cluster.bicluster.SpectralBiclustering(n_clusters=3, method='bistochastic', n_components=6, n_best=3,

2025-01-10 15:47:30
Hierarchical clustering
  • References/Python/scikit-learn/Examples/Clustering

Example builds a swiss roll dataset and runs hierarchical clustering on their position. For more information, see

2025-01-10 15:47:30
Comparing randomized search and grid search for hyperparameter estimation
  • References/Python/scikit-learn/Examples/Model Selection

Compare randomized search and grid search for optimizing hyperparameters of a random forest. All parameters that influence

2025-01-10 15:47:30
covariance.OAS()
  • References/Python/scikit-learn/API Reference/covariance

class sklearn.covariance.OAS(store_precision=True, assume_centered=False)

2025-01-10 15:47:30
Plot the decision boundaries of a VotingClassifier
  • References/Python/scikit-learn/Examples/Ensemble methods

Plot the decision boundaries of a VotingClassifier for two features of the Iris dataset. Plot the class probabilities

2025-01-10 15:47:30
Swiss Roll reduction with LLE
  • References/Python/scikit-learn/Examples/Manifold learning

An illustration of Swiss Roll reduction with locally linear embedding

2025-01-10 15:47:30