feature_selection.SelectPercentile()
  • References/Python/scikit-learn/API Reference/feature_selection

class sklearn.feature_selection.SelectPercentile(score_func=, percentile=10)

2025-01-10 15:47:30
2.8.
  • References/Python/scikit-learn/Guide

Density estimation walks the line between unsupervised learning, feature engineering, and data modeling. Some of the most popular and useful density estimation techniques

2025-01-10 15:47:30
Robust vs Empirical covariance estimate
  • References/Python/scikit-learn/Examples/Covariance estimation

The usual covariance maximum likelihood estimate is very sensitive to the presence of outliers in the data set. In such a case, it would be better to

2025-01-10 15:47:30
sklearn.metrics.roc_curve()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.roc_curve(y_true, y_score, pos_label=None, sample_weight=None, drop_intermediate=True)

2025-01-10 15:47:30
feature_selection.SelectFwe()
  • References/Python/scikit-learn/API Reference/feature_selection

class sklearn.feature_selection.SelectFwe(score_func=, alpha=0.05)

2025-01-10 15:47:30
sklearn.cluster.spectral_clustering()
  • References/Python/scikit-learn/API Reference/cluster

sklearn.cluster.spectral_clustering(affinity, n_clusters=8, n_components=None, eigen_solver=None, random_state=None, n_init=10

2025-01-10 15:47:30
ensemble.RandomForestRegressor()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.RandomForestRegressor(n_estimators=10, criterion='mse', max_depth=None, min_samples_split=2, min_samples_leaf=1

2025-01-10 15:47:30
neighbors.KernelDensity()
  • References/Python/scikit-learn/API Reference/neighbors

class sklearn.neighbors.KernelDensity(bandwidth=1.0, algorithm='auto', kernel='gaussian', metric='euclidean', atol=0, rtol=0, breadth_first=True

2025-01-10 15:47:30
Sample pipeline for text feature extraction and evaluation
  • References/Python/scikit-learn/Examples/Model Selection

The dataset used in this example is the 20 newsgroups dataset which will be automatically downloaded and then cached and reused for

2025-01-10 15:47:30
sklearn.datasets.make_circles()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_circles(n_samples=100, shuffle=True, noise=None, random_state=None, factor=0.8)

2025-01-10 15:47:30