Decision Tree Regression
  • References/Python/scikit-learn/Examples/Decision Trees

A 1D regression with decision tree. The

2025-01-10 15:47:30
naive_bayes.GaussianNB()
  • References/Python/scikit-learn/API Reference/naive_bayes

class sklearn.naive_bayes.GaussianNB(priors=None)

2025-01-10 15:47:30
sklearn.feature_selection.chi2()
  • References/Python/scikit-learn/API Reference/feature_selection

sklearn.feature_selection.chi2(X, y)

2025-01-10 15:47:30
Visualizing the stock market structure
  • References/Python/scikit-learn/Examples/Examples based on real world datasets

This example employs several unsupervised learning techniques to extract the stock market structure from variations in historical quotes. The quantity

2025-01-10 15:47:30
4.5.
  • References/Python/scikit-learn/Guide

The sklearn

2025-01-10 15:47:30
Restricted Boltzmann Machine features for digit classification
  • References/Python/scikit-learn/Examples/Neural Networks

For greyscale image data where pixel values can be interpreted as degrees of blackness on a white background, like handwritten

2025-01-10 15:47:30
Gaussian process regression on Mauna Loa CO2 data.
  • References/Python/scikit-learn/Examples/Gaussian Process for Machine Learning

This example is based on Section 5.4.3 of ?Gaussian Processes for Machine Learning? [RW2006]. It illustrates an example of complex kernel

2025-01-10 15:47:30
cluster.DBSCAN()
  • References/Python/scikit-learn/API Reference/cluster

class sklearn.cluster.DBSCAN(eps=0.5, min_samples=5, metric='euclidean', algorithm='auto', leaf_size=30, p=None, n_jobs=1)

2025-01-10 15:47:30
gaussian_process.kernels.RBF()
  • References/Python/scikit-learn/API Reference/gaussian_process

class sklearn.gaussian_process.kernels.RBF(length_scale=1.0, length_scale_bounds=(1e-05, 100000.0))

2025-01-10 15:47:30
sklearn.metrics.roc_auc_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.roc_auc_score(y_true, y_score, average='macro', sample_weight=None)

2025-01-10 15:47:30