sklearn.metrics.label_ranking_loss(y_true, y_score, sample_weight=None)
class sklearn.tree.ExtraTreeClassifier(criterion='gini', splitter='random', max_depth=None, min_samples_split=2, min_samples_leaf=1
class sklearn.decomposition.IncrementalPCA(n_components=None, whiten=False, copy=True, batch_size=None)
class sklearn.dummy.DummyClassifier(strategy='stratified', random_state=None, constant=None)
sklearn.svm.libsvm.predict_proba() Predict probabilities svm_model stores all parameters needed to
class sklearn.feature_selection.SelectPercentile(score_func=, percentile=10)
Evaluate the ability of k-means initializations strategies to make the algorithm convergence robust as measured by the relative
A 1D regression with decision tree. The
class sklearn.naive_bayes.GaussianNB(priors=None)
sklearn.feature_selection.chi2(X, y)
Page 63 of 70