sklearn.isotonic.check_increasing()
  • References/Python/scikit-learn/API Reference/isotonic

sklearn.isotonic.check_increasing(x, y)

2025-01-10 15:47:30
multiclass.OutputCodeClassifier()
  • References/Python/scikit-learn/API Reference/multiclass

class sklearn.multiclass.OutputCodeClassifier(estimator, code_size=1.5, random_state=None, n_jobs=1)

2025-01-10 15:47:30
sklearn.datasets.make_sparse_spd_matrix()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_sparse_spd_matrix(dim=1, alpha=0.95, norm_diag=False, smallest_coef=0.1, largest_coef=0.9, random_state=None)

2025-01-10 15:47:30
decomposition.IncrementalPCA()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.IncrementalPCA(n_components=None, whiten=False, copy=True, batch_size=None)

2025-01-10 15:47:30
sklearn.preprocessing.minmax_scale()
  • References/Python/scikit-learn/API Reference/preprocessing

sklearn.preprocessing.minmax_scale(X, feature_range=(0, 1), axis=0, copy=True)

2025-01-10 15:47:30
mixture.GMM()
  • References/Python/scikit-learn/API Reference/mixture

Warning DEPRECATED class sklearn

2025-01-10 15:47:30
model_selection.ShuffleSplit()
  • References/Python/scikit-learn/API Reference/model_selection

class sklearn.model_selection.ShuffleSplit(n_splits=10, test_size=0.1, train_size=None, random_state=None)

2025-01-10 15:47:30
Multilabel classification
  • References/Python/scikit-learn/Examples/General examples

This example simulates a multi-label document classification problem. The dataset is generated randomly based on the following process: pick

2025-01-10 15:47:30
model_selection.LeavePGroupsOut()
  • References/Python/scikit-learn/API Reference/model_selection

class sklearn.model_selection.LeavePGroupsOut(n_groups)

2025-01-10 15:47:30
sklearn.metrics.pairwise_distances()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise_distances(X, Y=None, metric='euclidean', n_jobs=1, **kwds)

2025-01-10 15:47:30