sklearn.metrics.label_ranking_loss()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.label_ranking_loss(y_true, y_score, sample_weight=None)

2025-01-10 15:47:30
tree.ExtraTreeClassifier()
  • References/Python/scikit-learn/API Reference/tree

class sklearn.tree.ExtraTreeClassifier(criterion='gini', splitter='random', max_depth=None, min_samples_split=2, min_samples_leaf=1

2025-01-10 15:47:30
decomposition.IncrementalPCA()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.IncrementalPCA(n_components=None, whiten=False, copy=True, batch_size=None)

2025-01-10 15:47:30
dummy.DummyClassifier()
  • References/Python/scikit-learn/API Reference/dummy

class sklearn.dummy.DummyClassifier(strategy='stratified', random_state=None, constant=None)

2025-01-10 15:47:30
sklearn.svm.libsvm.predict_proba()
  • References/Python/scikit-learn/API Reference/svm

sklearn.svm.libsvm.predict_proba() Predict probabilities svm_model stores all parameters needed to

2025-01-10 15:47:30
feature_selection.SelectPercentile()
  • References/Python/scikit-learn/API Reference/feature_selection

class sklearn.feature_selection.SelectPercentile(score_func=, percentile=10)

2025-01-10 15:47:30
Empirical evaluation of the impact of k-means initialization
  • References/Python/scikit-learn/Examples/Clustering

Evaluate the ability of k-means initializations strategies to make the algorithm convergence robust as measured by the relative

2025-01-10 15:47:30
Decision Tree Regression
  • References/Python/scikit-learn/Examples/Decision Trees

A 1D regression with decision tree. The

2025-01-10 15:47:30
naive_bayes.GaussianNB()
  • References/Python/scikit-learn/API Reference/naive_bayes

class sklearn.naive_bayes.GaussianNB(priors=None)

2025-01-10 15:47:30
sklearn.feature_selection.chi2()
  • References/Python/scikit-learn/API Reference/feature_selection

sklearn.feature_selection.chi2(X, y)

2025-01-10 15:47:30