sklearn.linear_model.orthogonal_mp_gram(Gram, Xy, n_nonzero_coefs=None, tol=None, norms_squared=None, copy_Gram=True, copy_Xy=True
Warning DEPRECATED class
class sklearn.ensemble.BaggingRegressor(base_estimator=None, n_estimators=10, max_samples=1.0, max_features=1.0, bootstrap=True,
class sklearn.neighbors.RadiusNeighborsClassifier(radius=1.0, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski'
Warning DEPRECATED
sklearn.metrics.confusion_matrix(y_true, y_pred, labels=None, sample_weight=None)
class sklearn.preprocessing.OneHotEncoder(n_values='auto', categorical_features='all', dtype=, sparse=True, handle_unknown='error')
sklearn.metrics.zero_one_loss(y_true, y_pred, normalize=True, sample_weight=None)
sklearn.cluster.estimate_bandwidth(X, quantile=0.3, n_samples=None, random_state=0, n_jobs=1)
The goal of this guide is to explore some of the main scikit-learn tools on a single practical task: analysing a collection of text documents (newsgroups
Page 60 of 70