sklearn.linear_model.logistic_regression_path(X, y, pos_class=None, Cs=10, fit_intercept=True, max_iter=100, tol=0
class sklearn.neighbors.RadiusNeighborsRegressor(radius=1.0, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski'
An example illustrating the approximation of the feature map of an RBF kernel. It shows how to use
2.5.1. Principal component analysis (PCA) 2.5.1.1. Exact PCA and probabilistic interpretation PCA
class sklearn.kernel_approximation.SkewedChi2Sampler(skewedness=1.0, n_components=100, random_state=None)
sklearn.datasets.fetch_mldata(dataname, target_name='label', data_name='data', transpose_data=True, data_home=None)
sklearn.model_selection.cross_val_predict(estimator, X, y=None, groups=None, cv=None, n_jobs=1, verbose=0, fit_params=None
class sklearn.gaussian_process.kernels.RBF(length_scale=1.0, length_scale_bounds=(1e-05, 100000.0))
sklearn.metrics.pairwise.chi2_kernel(X, Y=None, gamma=1.0)
Warning DEPRECATED
Page 57 of 70