model_selection.LeaveOneGroupOut
  • References/Python/scikit-learn/API Reference/model_selection

class sklearn.model_selection.LeaveOneGroupOut

2025-01-10 15:47:30
sklearn.metrics.coverage_error()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.coverage_error(y_true, y_score, sample_weight=None)

2025-01-10 15:47:30
base.BaseEstimator
  • References/Python/scikit-learn/API Reference/base

class sklearn.base.BaseEstimator

2025-01-10 15:47:30
model_selection.GridSearchCV()
  • References/Python/scikit-learn/API Reference/model_selection

class sklearn.model_selection.GridSearchCV(estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True

2025-01-10 15:47:30
sklearn.model_selection.cross_val_score()
  • References/Python/scikit-learn/API Reference/model_selection

sklearn.model_selection.cross_val_score(estimator, X, y=None, groups=None, scoring=None, cv=None, n_jobs=1, verbose=0, fit_params=None

2025-01-10 15:47:30
Gaussian process classification on iris dataset
  • References/Python/scikit-learn/Examples/Gaussian Process for Machine Learning

This example illustrates the predicted probability of GPC for an isotropic and anisotropic RBF kernel on a two-dimensional version for the

2025-01-10 15:47:30
scikit-learn Tutorials
  • References/Python/scikit-learn/Tutorials

An introduction to machine learning

2025-01-10 15:47:30
Hierarchical clustering
  • References/Python/scikit-learn/Examples/Clustering

Example builds a swiss roll dataset and runs hierarchical clustering on their position. For more information, see

2025-01-10 15:47:30
Swiss Roll reduction with LLE
  • References/Python/scikit-learn/Examples/Manifold learning

An illustration of Swiss Roll reduction with locally linear embedding

2025-01-10 15:47:30
4.5.
  • References/Python/scikit-learn/Guide

The sklearn

2025-01-10 15:47:30