manifold.SpectralEmbedding()
  • References/Python/scikit-learn/API Reference/manifold

class sklearn.manifold.SpectralEmbedding(n_components=2, affinity='nearest_neighbors', gamma=None, random_state=None, eigen_solver=None

2025-01-10 15:47:30
sklearn.metrics.v_measure_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.v_measure_score(labels_true, labels_pred)

2025-01-10 15:47:30
Precision-Recall
  • References/Python/scikit-learn/Examples/Model Selection

Example of Precision-Recall metric to evaluate classifier output quality. In information retrieval, precision is a measure of result relevancy, while recall is a measure

2025-01-10 15:47:30
linear_model.PassiveAggressiveClassifier()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.PassiveAggressiveClassifier(C=1.0, fit_intercept=True, n_iter=5, shuffle=True, verbose=0

2025-01-10 15:47:30
Support Vector Regression using linear and non-linear kernels
  • References/Python/scikit-learn/Examples/Support Vector Machines

Toy example of 1D regression using linear, polynomial and RBF kernels. print(__doc__)

2025-01-10 15:47:30
Sample pipeline for text feature extraction and evaluation
  • References/Python/scikit-learn/Examples/Model Selection

The dataset used in this example is the 20 newsgroups dataset which will be automatically downloaded and then cached and reused for

2025-01-10 15:47:30
sklearn.metrics.pairwise_distances()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise_distances(X, Y=None, metric='euclidean', n_jobs=1, **kwds)

2025-01-10 15:47:30
Robust vs Empirical covariance estimate
  • References/Python/scikit-learn/Examples/Covariance estimation

The usual covariance maximum likelihood estimate is very sensitive to the presence of outliers in the data set. In such a case, it would be better to

2025-01-10 15:47:30
sklearn.metrics.roc_curve()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.roc_curve(y_true, y_score, pos_label=None, sample_weight=None, drop_intermediate=True)

2025-01-10 15:47:30
sklearn.metrics.zero_one_loss()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.zero_one_loss(y_true, y_pred, normalize=True, sample_weight=None)

2025-01-10 15:47:30