sklearn.cross_validation.train_test_split()
  • References/Python/scikit-learn/API Reference/cross_validation

Warning DEPRECATED

2025-01-10 15:47:30
covariance.OAS()
  • References/Python/scikit-learn/API Reference/covariance

class sklearn.covariance.OAS(store_precision=True, assume_centered=False)

2025-01-10 15:47:30
linear_model.SGDClassifier()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.SGDClassifier(loss='hinge', penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5,

2025-01-10 15:47:30
sklearn.svm.libsvm.predict_proba()
  • References/Python/scikit-learn/API Reference/svm

sklearn.svm.libsvm.predict_proba() Predict probabilities svm_model stores all parameters needed to

2025-01-10 15:47:30
decomposition.TruncatedSVD()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.TruncatedSVD(n_components=2, algorithm='randomized', n_iter=5, random_state=None, tol=0.0)

2025-01-10 15:47:30
Nearest Neighbors regression
  • References/Python/scikit-learn/Examples/Nearest Neighbors

Demonstrate the resolution of a regression problem using a k-Nearest Neighbor and the interpolation of the target using both barycenter and constant weights.

2025-01-10 15:47:30
sklearn.datasets.fetch_20newsgroups()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.fetch_20newsgroups(data_home=None, subset='train', categories=None, shuffle=True, random_state=42, remove=()

2025-01-10 15:47:30
linear_model.MultiTaskLasso()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.MultiTaskLasso(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=0.0001

2025-01-10 15:47:30
Multi-output Decision Tree Regression
  • References/Python/scikit-learn/Examples/Decision Trees

An example to illustrate multi-output regression with decision tree. The

2025-01-10 15:47:30
tree.ExtraTreeClassifier()
  • References/Python/scikit-learn/API Reference/tree

class sklearn.tree.ExtraTreeClassifier(criterion='gini', splitter='random', max_depth=None, min_samples_split=2, min_samples_leaf=1

2025-01-10 15:47:30