sklearn.metrics.fowlkes_mallows_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.fowlkes_mallows_score(labels_true, labels_pred, sparse=False)

2025-01-10 15:47:30
sklearn.datasets.make_low_rank_matrix()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_low_rank_matrix(n_samples=100, n_features=100, effective_rank=10, tail_strength=0.5, random_state=None)

2025-01-10 15:47:30
sklearn.cross_validation.train_test_split()
  • References/Python/scikit-learn/API Reference/cross_validation

Warning DEPRECATED

2025-01-10 15:47:30
sklearn.datasets.fetch_mldata()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.fetch_mldata(dataname, target_name='label', data_name='data', transpose_data=True, data_home=None)

2025-01-10 15:47:30
sklearn.datasets.make_moons()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_moons(n_samples=100, shuffle=True, noise=None, random_state=None)

2025-01-10 15:47:30
1.11.
  • References/Python/scikit-learn/Guide

The goal of ensemble methods is to combine the predictions of several base estimators built with a given learning algorithm in order to improve generalizability

2025-01-10 15:47:30
lda.LDA()
  • References/Python/scikit-learn/API Reference/lda

Warning DEPRECATED class sklearn

2025-01-10 15:47:30
neighbors.KernelDensity()
  • References/Python/scikit-learn/API Reference/neighbors

class sklearn.neighbors.KernelDensity(bandwidth=1.0, algorithm='auto', kernel='gaussian', metric='euclidean', atol=0, rtol=0, breadth_first=True

2025-01-10 15:47:30
Comparing different clustering algorithms on toy datasets
  • References/Python/scikit-learn/Examples/Clustering

This example aims at showing characteristics of different clustering algorithms on datasets that are ?interesting? but still in 2D

2025-01-10 15:47:30
linear_model.MultiTaskLasso()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.MultiTaskLasso(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=0.0001

2025-01-10 15:47:30