class sklearn.cross_decomposition.PLSRegression(n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True)
class sklearn.svm.LinearSVC(penalty='l2', loss='squared_hinge', dual=True, tol=0.0001, C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1
class sklearn.covariance.GraphLasso(alpha=0.01, mode='cd', tol=0.0001, enet_tol=0.0001, max_iter=100, verbose=False, assume_centered=False)
sklearn.covariance.empirical_covariance(X, assume_centered=False)
class sklearn.cluster.AffinityPropagation(damping=0.5, max_iter=200, convergence_iter=15, copy=True, preference=None, affinity='euclidean'
Warning DEPRECATED
On the left side the learning curve of a naive Bayes classifier is shown for the digits dataset. Note that the training score and the cross-validation score are both
A tutorial exercise which uses cross-validation with linear models. This exercise is used in the
class sklearn.covariance.MinCovDet(store_precision=True, assume_centered=False, support_fraction=None, random_state=None)
Use the Akaike information criterion (AIC), the Bayes Information criterion (BIC) and cross-validation to select an optimal value of the regularization
Page 55 of 70