Comparison of LDA and PCA 2D projection of Iris dataset
  • References/Python/scikit-learn/Examples/Decomposition

The Iris dataset represents 3 kind of Iris flowers (Setosa, Versicolour and Virginica) with 4 attributes: sepal length, sepal width,

2025-01-10 15:47:30
neural_network.BernoulliRBM()
  • References/Python/scikit-learn/API Reference/neural_network

class sklearn.neural_network.BernoulliRBM(n_components=256, learning_rate=0.1, batch_size=10, n_iter=10, verbose=0, random_state=None)

2025-01-10 15:47:30
Recursive feature elimination
  • References/Python/scikit-learn/Examples/Feature Selection

A recursive feature elimination example showing the relevance of pixels in a digit classification task.

2025-01-10 15:47:30
Classification of text documents using sparse features
  • References/Python/scikit-learn/Examples/Working with text documents

This is an example showing how scikit-learn can be used to classify documents by topics using a bag-of-words approach. This example uses

2025-01-10 15:47:30
2.6.
  • References/Python/scikit-learn/Guide

Many statistical problems require at some point the estimation of a population?s covariance matrix, which can be seen as an estimation of data set scatter plot shape.

2025-01-10 15:47:30
sklearn.metrics.pairwise.paired_cosine_distances()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.paired_cosine_distances(X, Y)

2025-01-10 15:47:30
cross_decomposition.PLSRegression()
  • References/Python/scikit-learn/API Reference/cross_decomposition

class sklearn.cross_decomposition.PLSRegression(n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True)

2025-01-10 15:47:30
Illustration of prior and posterior Gaussian process for different kernels
  • References/Python/scikit-learn/Examples/Gaussian Process for Machine Learning

This example illustrates the prior and posterior of a GPR with different kernels. Mean, standard deviation, and 10

2025-01-10 15:47:30
manifold.MDS()
  • References/Python/scikit-learn/API Reference/manifold

class sklearn.manifold.MDS(n_components=2, metric=True, n_init=4, max_iter=300, verbose=0, eps=0.001, n_jobs=1, random_state=None, dissimilar

2025-01-10 15:47:30
cross_decomposition.PLSCanonical()
  • References/Python/scikit-learn/API Reference/cross_decomposition

class sklearn.cross_decomposition.PLSCanonical(n_components=2, scale=True, algorithm='nipals', max_iter=500, tol=1e-06, copy=True)

2025-01-10 15:47:30