class sklearn.linear_model.Perceptron(penalty=None, alpha=0.0001, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, eta0=1.0,
class sklearn.ensemble.BaggingClassifier(base_estimator=None, n_estimators=10, max_samples=1.0, max_features=1.0, bootstrap=True
sklearn.datasets.load_diabetes(return_X_y=False)
This example shows how to use cross_val_predict to visualize prediction errors.
Plot the density estimation of a mixture of two Gaussians. Data is generated from two Gaussians with different centers and covariance matrices.
class sklearn.cluster.MiniBatchKMeans(n_clusters=8, init='k-means++', max_iter=100, batch_size=100, verbose=0, compute_labels=True
class sklearn.feature_extraction.text.HashingVectorizer(input=u'content', encoding=u'utf-8', decode_error=u'strict'
A tutorial exercise which uses cross-validation with linear models. This exercise is used in the
Warning DEPRECATED
class sklearn.ensemble.RandomTreesEmbedding(n_estimators=10, max_depth=5, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0
Page 50 of 70