linear_model.Perceptron()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.Perceptron(penalty=None, alpha=0.0001, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, eta0=1.0,

2025-01-10 15:47:30
ensemble.BaggingClassifier()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.BaggingClassifier(base_estimator=None, n_estimators=10, max_samples=1.0, max_features=1.0, bootstrap=True

2025-01-10 15:47:30
sklearn.datasets.load_diabetes()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.load_diabetes(return_X_y=False)

2025-01-10 15:47:30
Plotting Cross-Validated Predictions
  • References/Python/scikit-learn/Examples/General examples

This example shows how to use cross_val_predict to visualize prediction errors.

2025-01-10 15:47:30
Density Estimation for a Gaussian mixture
  • References/Python/scikit-learn/Examples/Gaussian Mixture Models

Plot the density estimation of a mixture of two Gaussians. Data is generated from two Gaussians with different centers and covariance matrices.

2025-01-10 15:47:30
cluster.MiniBatchKMeans()
  • References/Python/scikit-learn/API Reference/cluster

class sklearn.cluster.MiniBatchKMeans(n_clusters=8, init='k-means++', max_iter=100, batch_size=100, verbose=0, compute_labels=True

2025-01-10 15:47:30
feature_extraction.text.HashingVectorizer()
  • References/Python/scikit-learn/API Reference/feature_extraction

class sklearn.feature_extraction.text.HashingVectorizer(input=u'content', encoding=u'utf-8', decode_error=u'strict'

2025-01-10 15:47:30
Cross-validation on diabetes Dataset Exercise
  • References/Python/scikit-learn/Examples/Tutorial exercises

A tutorial exercise which uses cross-validation with linear models. This exercise is used in the

2025-01-10 15:47:30
cross_validation.LabelKFold()
  • References/Python/scikit-learn/API Reference/cross_validation

Warning DEPRECATED

2025-01-10 15:47:30
ensemble.RandomTreesEmbedding()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.RandomTreesEmbedding(n_estimators=10, max_depth=5, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0

2025-01-10 15:47:30