Understanding the decision tree structure
  • References/Python/scikit-learn/Examples/Decision Trees

The decision tree structure can be analysed to gain further insight on the relation between the features and the target to predict. In this example

2025-01-10 15:47:30
cross_validation.ShuffleSplit()
  • References/Python/scikit-learn/API Reference/cross_validation

Warning DEPRECATED

2025-01-10 15:47:30
ensemble.BaggingClassifier()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.BaggingClassifier(base_estimator=None, n_estimators=10, max_samples=1.0, max_features=1.0, bootstrap=True

2025-01-10 15:47:30
linear_model.LarsCV()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.LarsCV(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None, max_n_alphas=1000

2025-01-10 15:47:30
Clustering text documents using k-means
  • References/Python/scikit-learn/Examples/Working with text documents

This is an example showing how the scikit-learn can be used to cluster documents by topics using a bag-of-words approach. This example uses a scipy.sparse

2025-01-10 15:47:30
Label Propagation digits
  • References/Python/scikit-learn/Examples/Semi Supervised Classification

This example demonstrates the power of semisupervised learning by training a Label Spreading model to classify handwritten digits with sets

2025-01-10 15:47:30
4.3.
  • References/Python/scikit-learn/Guide

The sklearn.preprocessing package provides several common utility functions and transformer classes to change raw feature vectors into a representation that

2025-01-10 15:47:30
svm.NuSVC()
  • References/Python/scikit-learn/API Reference/svm

class sklearn.svm.NuSVC(nu=0.5, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None

2025-01-10 15:47:30
isotonic.IsotonicRegression()
  • References/Python/scikit-learn/API Reference/isotonic

class sklearn.isotonic.IsotonicRegression(y_min=None, y_max=None, increasing=True, out_of_bounds='nan')

2025-01-10 15:47:30
manifold.MDS()
  • References/Python/scikit-learn/API Reference/manifold

class sklearn.manifold.MDS(n_components=2, metric=True, n_init=4, max_iter=300, verbose=0, eps=0.001, n_jobs=1, random_state=None, dissimilar

2025-01-10 15:47:30