ensemble.RandomTreesEmbedding()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.RandomTreesEmbedding(n_estimators=10, max_depth=5, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0

2025-01-10 15:47:30
sklearn.decomposition.sparse_encode()
  • References/Python/scikit-learn/API Reference/decomposition

sklearn.decomposition.sparse_encode(X, dictionary, gram=None, cov=None, algorithm='lasso_lars', n_nonzero_coefs=None, alpha=None

2025-01-10 15:47:30
decomposition.MiniBatchDictionaryLearning()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.MiniBatchDictionaryLearning(n_components=None, alpha=1, n_iter=1000, fit_algorithm='lars'

2025-01-10 15:47:30
Comparison of the K-Means and MiniBatchKMeans clustering algorithms
  • References/Python/scikit-learn/Examples/Clustering

We want to compare the performance of the MiniBatchKMeans and KMeans: the MiniBatchKMeans is faster, but gives slightly different

2025-01-10 15:47:30
sklearn.learning_curve.validation_curve()
  • References/Python/scikit-learn/API Reference/learning_curve

Warning DEPRECATED

2025-01-10 15:47:30
preprocessing.Normalizer()
  • References/Python/scikit-learn/API Reference/preprocessing

class sklearn.preprocessing.Normalizer(norm='l2', copy=True)

2025-01-10 15:47:30
svm.LinearSVC()
  • References/Python/scikit-learn/API Reference/svm

class sklearn.svm.LinearSVC(penalty='l2', loss='squared_hinge', dual=True, tol=0.0001, C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1

2025-01-10 15:47:30
preprocessing.RobustScaler()
  • References/Python/scikit-learn/API Reference/preprocessing

class sklearn.preprocessing.RobustScaler(with_centering=True, with_scaling=True, quantile_range=(25.0, 75.0), copy=True)

2025-01-10 15:47:30
Vector Quantization Example
  • References/Python/scikit-learn/Examples/Clustering

Face, a 1024 x 768 size image of a raccoon face, is used here to illustrate how k-means is used for vector quantization.

2025-01-10 15:47:30
svm.SVC()
  • References/Python/scikit-learn/API Reference/svm

class sklearn.svm.SVC(C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None

2025-01-10 15:47:30