class sklearn.manifold.Isomap(n_neighbors=5, n_components=2, eigen_solver='auto', tol=0, max_iter=None, path_method='auto', neighbors_algorithm='auto'
Warning DEPRECATED class sklearn
This illustrates the datasets.make_multilabel_classification dataset generator. Each sample consists of counts of two features (up to
The Iris dataset represents 3 kind of Iris flowers (Setosa, Versicolour and Virginica) with 4 attributes: sepal length, sepal width,
This example shows that Kernel PCA is able to find a projection of the data that makes data linearly separable.
class sklearn.cross_decomposition.PLSRegression(n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True)
class sklearn.svm.LinearSVC(penalty='l2', loss='squared_hinge', dual=True, tol=0.0001, C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1
class sklearn.covariance.GraphLasso(alpha=0.01, mode='cd', tol=0.0001, enet_tol=0.0001, max_iter=100, verbose=False, assume_centered=False)
sklearn.covariance.empirical_covariance(X, assume_centered=False)
class sklearn.cluster.AffinityPropagation(damping=0.5, max_iter=200, convergence_iter=15, copy=True, preference=None, affinity='euclidean'
Page 54 of 70