Illustration of prior and posterior Gaussian process for different kernels
  • References/Python/scikit-learn/Examples/Gaussian Process for Machine Learning

This example illustrates the prior and posterior of a GPR with different kernels. Mean, standard deviation, and 10

2025-01-10 15:47:30
manifold.MDS()
  • References/Python/scikit-learn/API Reference/manifold

class sklearn.manifold.MDS(n_components=2, metric=True, n_init=4, max_iter=300, verbose=0, eps=0.001, n_jobs=1, random_state=None, dissimilar

2025-01-10 15:47:30
cross_decomposition.PLSCanonical()
  • References/Python/scikit-learn/API Reference/cross_decomposition

class sklearn.cross_decomposition.PLSCanonical(n_components=2, scale=True, algorithm='nipals', max_iter=500, tol=1e-06, copy=True)

2025-01-10 15:47:30
1.15.
  • References/Python/scikit-learn/Guide

The class

2025-01-10 15:47:30
sklearn.feature_selection.f_regression()
  • References/Python/scikit-learn/API Reference/feature_selection

sklearn.feature_selection.f_regression(X, y, center=True)

2025-01-10 15:47:30
cluster.bicluster.SpectralCoclustering()
  • References/Python/scikit-learn/API Reference/cluster

class sklearn.cluster.bicluster.SpectralCoclustering(n_clusters=3, svd_method='randomized', n_svd_vecs=None, mini_batch=False

2025-01-10 15:47:30
covariance.MinCovDet()
  • References/Python/scikit-learn/API Reference/covariance

class sklearn.covariance.MinCovDet(store_precision=True, assume_centered=False, support_fraction=None, random_state=None)

2025-01-10 15:47:30
sklearn.datasets.fetch_species_distributions()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.fetch_species_distributions(data_home=None, download_if_missing=True)

2025-01-10 15:47:30
sklearn.metrics.classification_report()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.classification_report(y_true, y_pred, labels=None, target_names=None, sample_weight=None, digits=2)

2025-01-10 15:47:30
linear_model.LassoLars()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.LassoLars(alpha=1.0, fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500,

2025-01-10 15:47:30