manifold.Isomap()
  • References/Python/scikit-learn/API Reference/manifold

class sklearn.manifold.Isomap(n_neighbors=5, n_components=2, eigen_solver='auto', tol=0, max_iter=None, path_method='auto', neighbors_algorithm='auto'

2025-01-10 15:47:30
mixture.DPGMM()
  • References/Python/scikit-learn/API Reference/mixture

Warning DEPRECATED class sklearn

2025-01-10 15:47:30
Plot randomly generated multilabel dataset
  • References/Python/scikit-learn/Examples/Dataset examples

This illustrates the datasets.make_multilabel_classification dataset generator. Each sample consists of counts of two features (up to

2025-01-10 15:47:30
Comparison of LDA and PCA 2D projection of Iris dataset
  • References/Python/scikit-learn/Examples/Decomposition

The Iris dataset represents 3 kind of Iris flowers (Setosa, Versicolour and Virginica) with 4 attributes: sepal length, sepal width,

2025-01-10 15:47:30
Kernel PCA
  • References/Python/scikit-learn/Examples/Decomposition

This example shows that Kernel PCA is able to find a projection of the data that makes data linearly separable.

2025-01-10 15:47:30
cross_decomposition.PLSRegression()
  • References/Python/scikit-learn/API Reference/cross_decomposition

class sklearn.cross_decomposition.PLSRegression(n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True)

2025-01-10 15:47:30
svm.LinearSVC()
  • References/Python/scikit-learn/API Reference/svm

class sklearn.svm.LinearSVC(penalty='l2', loss='squared_hinge', dual=True, tol=0.0001, C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1

2025-01-10 15:47:30
covariance.GraphLasso()
  • References/Python/scikit-learn/API Reference/covariance

class sklearn.covariance.GraphLasso(alpha=0.01, mode='cd', tol=0.0001, enet_tol=0.0001, max_iter=100, verbose=False, assume_centered=False)

2025-01-10 15:47:30
sklearn.covariance.empirical_covariance()
  • References/Python/scikit-learn/API Reference/covariance

sklearn.covariance.empirical_covariance(X, assume_centered=False)

2025-01-10 15:47:30
cluster.AffinityPropagation()
  • References/Python/scikit-learn/API Reference/cluster

class sklearn.cluster.AffinityPropagation(damping=0.5, max_iter=200, convergence_iter=15, copy=True, preference=None, affinity='euclidean'

2025-01-10 15:47:30