isotonic.IsotonicRegression()
  • References/Python/scikit-learn/API Reference/isotonic

class sklearn.isotonic.IsotonicRegression(y_min=None, y_max=None, increasing=True, out_of_bounds='nan')

2025-01-10 15:47:30
manifold.MDS()
  • References/Python/scikit-learn/API Reference/manifold

class sklearn.manifold.MDS(n_components=2, metric=True, n_init=4, max_iter=300, verbose=0, eps=0.001, n_jobs=1, random_state=None, dissimilar

2025-01-10 15:47:30
sklearn.metrics.precision_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.precision_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None)

2025-01-10 15:47:30
cluster.bicluster.SpectralCoclustering()
  • References/Python/scikit-learn/API Reference/cluster

class sklearn.cluster.bicluster.SpectralCoclustering(n_clusters=3, svd_method='randomized', n_svd_vecs=None, mini_batch=False

2025-01-10 15:47:30
The Iris Dataset
  • References/Python/scikit-learn/Examples/Dataset examples

This data sets consists of 3 different types of irises? (Setosa, Versicolour, and Virginica) petal and sepal length, stored in a 150x4 numpy.ndarray The rows being the

2025-01-10 15:47:30
svm.NuSVR()
  • References/Python/scikit-learn/API Reference/svm

class sklearn.svm.NuSVR(nu=0.5, C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, tol=0.001, cache_size=200, verbose=False

2025-01-10 15:47:30
Vector Quantization Example
  • References/Python/scikit-learn/Examples/Clustering

Face, a 1024 x 768 size image of a raccoon face, is used here to illustrate how k-means is used for vector quantization.

2025-01-10 15:47:30
Comparison of the K-Means and MiniBatchKMeans clustering algorithms
  • References/Python/scikit-learn/Examples/Clustering

We want to compare the performance of the MiniBatchKMeans and KMeans: the MiniBatchKMeans is faster, but gives slightly different

2025-01-10 15:47:30
Robust linear estimator fitting
  • References/Python/scikit-learn/Examples/Generalized Linear Models

Here a sine function is fit with a polynomial of order 3, for values close to zero. Robust fitting is demoed in different situations: No

2025-01-10 15:47:30
Classification of text documents using sparse features
  • References/Python/scikit-learn/Examples/Working with text documents

This is an example showing how scikit-learn can be used to classify documents by topics using a bag-of-words approach. This example uses

2025-01-10 15:47:30