Plotting Learning Curves
  • References/Python/scikit-learn/Examples/Model Selection

On the left side the learning curve of a naive Bayes classifier is shown for the digits dataset. Note that the training score and the cross-validation score are both

2025-01-10 15:47:30
sklearn.datasets.make_checkerboard()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_checkerboard(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None)

2025-01-10 15:47:30
decomposition.LatentDirichletAllocation()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.LatentDirichletAllocation(n_topics=10, doc_topic_prior=None, topic_word_prior=None, learning_method=None

2025-01-10 15:47:30
discriminant_analysis.LinearDiscriminantAnalysis()
  • References/Python/scikit-learn/API Reference/discriminant_analysis

class sklearn.discriminant_analysis.LinearDiscriminantAnalysis(solver='svd', shrinkage=None, priors=None,

2025-01-10 15:47:30
sklearn.metrics.pairwise.cosine_similarity()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.cosine_similarity(X, Y=None, dense_output=True)

2025-01-10 15:47:30
Probability Calibration for 3-class classification
  • References/Python/scikit-learn/Examples/Calibration

This example illustrates how sigmoid calibration changes predicted probabilities for a 3-class classification problem. Illustrated is the

2025-01-10 15:47:30
cluster.Birch()
  • References/Python/scikit-learn/API Reference/cluster

class sklearn.cluster.Birch(threshold=0.5, branching_factor=50, n_clusters=3, compute_labels=True, copy=True)

2025-01-10 15:47:30
tree.DecisionTreeClassifier()
  • References/Python/scikit-learn/API Reference/tree

class sklearn.tree.DecisionTreeClassifier(criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1

2025-01-10 15:47:30
Parameter estimation using grid search with cross-validation
  • References/Python/scikit-learn/Examples/Model Selection

This examples shows how a classifier is optimized by cross-validation, which is done using the

2025-01-10 15:47:30
sklearn.metrics.adjusted_rand_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.adjusted_rand_score(labels_true, labels_pred)

2025-01-10 15:47:30