linear_model.LogisticRegression()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1

2025-01-10 15:47:30
linear_model.ARDRegression()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.ARDRegression(n_iter=300, tol=0.001, alpha_1=1e-06, alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-06, compute_score=False

2025-01-10 15:47:30
2.1.
  • References/Python/scikit-learn/Guide

sklearn.mixture is a package which enables one to learn Gaussian Mixture Models (diagonal, spherical, tied and full covariance matrices supported), sample

2025-01-10 15:47:30
Iso-probability lines for Gaussian Processes classification
  • References/Python/scikit-learn/Examples/Gaussian Process for Machine Learning

A two-dimensional classification example showing iso-probability lines for the predicted probabilities.

2025-01-10 15:47:30
Gradient Boosting regression
  • References/Python/scikit-learn/Examples/Ensemble methods

Demonstrate Gradient Boosting on the Boston housing dataset. This example fits a Gradient Boosting model with least squares loss and 500 regression trees

2025-01-10 15:47:30
cross_validation.LeaveOneLabelOut()
  • References/Python/scikit-learn/API Reference/cross_validation

Warning DEPRECATED

2025-01-10 15:47:30
sklearn.metrics.precision_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.precision_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None)

2025-01-10 15:47:30
sklearn.metrics.precision_recall_curve()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.precision_recall_curve(y_true, probas_pred, pos_label=None, sample_weight=None)

2025-01-10 15:47:30
sklearn.metrics.average_precision_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.average_precision_score(y_true, y_score, average='macro', sample_weight=None)

2025-01-10 15:47:30
sklearn.metrics.jaccard_similarity_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.jaccard_similarity_score(y_true, y_pred, normalize=True, sample_weight=None)

2025-01-10 15:47:30