class sklearn.linear_model.LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1
class sklearn.linear_model.ARDRegression(n_iter=300, tol=0.001, alpha_1=1e-06, alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-06, compute_score=False
sklearn.mixture is a package which enables one to learn Gaussian Mixture Models (diagonal, spherical, tied and full covariance matrices supported), sample
A two-dimensional classification example showing iso-probability lines for the predicted probabilities.
Demonstrate Gradient Boosting on the Boston housing dataset. This example fits a Gradient Boosting model with least squares loss and 500 regression trees
Warning DEPRECATED
sklearn.metrics.precision_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None)
sklearn.metrics.precision_recall_curve(y_true, probas_pred, pos_label=None, sample_weight=None)
sklearn.metrics.average_precision_score(y_true, y_score, average='macro', sample_weight=None)
sklearn.metrics.jaccard_similarity_score(y_true, y_pred, normalize=True, sample_weight=None)
Page 49 of 70