sklearn.datasets.load_boston()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.load_boston(return_X_y=False)

2025-01-10 15:47:30
1.11.
  • References/Python/scikit-learn/Guide

The goal of ensemble methods is to combine the predictions of several base estimators built with a given learning algorithm in order to improve generalizability

2025-01-10 15:47:30
Empirical evaluation of the impact of k-means initialization
  • References/Python/scikit-learn/Examples/Clustering

Evaluate the ability of k-means initializations strategies to make the algorithm convergence robust as measured by the relative

2025-01-10 15:47:30
sklearn.isotonic.check_increasing()
  • References/Python/scikit-learn/API Reference/isotonic

sklearn.isotonic.check_increasing(x, y)

2025-01-10 15:47:30
multiclass.OutputCodeClassifier()
  • References/Python/scikit-learn/API Reference/multiclass

class sklearn.multiclass.OutputCodeClassifier(estimator, code_size=1.5, random_state=None, n_jobs=1)

2025-01-10 15:47:30
sklearn.datasets.load_iris()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.load_iris(return_X_y=False)

2025-01-10 15:47:30
sklearn.datasets.make_sparse_spd_matrix()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_sparse_spd_matrix(dim=1, alpha=0.95, norm_diag=False, smallest_coef=0.1, largest_coef=0.9, random_state=None)

2025-01-10 15:47:30
decomposition.IncrementalPCA()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.IncrementalPCA(n_components=None, whiten=False, copy=True, batch_size=None)

2025-01-10 15:47:30
Probability Calibration curves
  • References/Python/scikit-learn/Examples/Calibration

When performing classification one often wants to predict not only the class label, but also the associated probability. This probability gives some kind of confidence

2025-01-10 15:47:30
sklearn.preprocessing.minmax_scale()
  • References/Python/scikit-learn/API Reference/preprocessing

sklearn.preprocessing.minmax_scale(X, feature_range=(0, 1), axis=0, copy=True)

2025-01-10 15:47:30