Plot the decision surface of a decision tree on the iris dataset
  • References/Python/scikit-learn/Examples/Decision Trees

Plot the decision surface of a decision tree trained on pairs of features of the iris dataset. See

2025-01-10 15:47:30
GMM covariances
  • References/Python/scikit-learn/Examples/Gaussian Mixture Models

Demonstration of several covariances types for Gaussian mixture models. See

2025-01-10 15:47:30
manifold.LocallyLinearEmbedding()
  • References/Python/scikit-learn/API Reference/manifold

class sklearn.manifold.LocallyLinearEmbedding(n_neighbors=5, n_components=2, reg=0.001, eigen_solver='auto', tol=1e-06, max_iter=100

2025-01-10 15:47:30
sklearn.metrics.coverage_error()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.coverage_error(y_true, y_score, sample_weight=None)

2025-01-10 15:47:30
sklearn.cluster.estimate_bandwidth()
  • References/Python/scikit-learn/API Reference/cluster

sklearn.cluster.estimate_bandwidth(X, quantile=0.3, n_samples=None, random_state=0, n_jobs=1)

2025-01-10 15:47:30
Confusion matrix
  • References/Python/scikit-learn/Examples/Model Selection

Example of confusion matrix usage to evaluate the quality of the output of a classifier on the iris data set. The diagonal elements represent the number of points for which

2025-01-10 15:47:30
Explicit feature map approximation for RBF kernels
  • References/Python/scikit-learn/Examples/General examples

An example illustrating the approximation of the feature map of an RBF kernel. It shows how to use

2025-01-10 15:47:30
Multilabel classification
  • References/Python/scikit-learn/Examples/General examples

This example simulates a multi-label document classification problem. The dataset is generated randomly based on the following process: pick

2025-01-10 15:47:30
model_selection.LeaveOneGroupOut
  • References/Python/scikit-learn/API Reference/model_selection

class sklearn.model_selection.LeaveOneGroupOut

2025-01-10 15:47:30
decomposition.DictionaryLearning()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.DictionaryLearning(n_components=None, alpha=1, max_iter=1000, tol=1e-08, fit_algorithm='lars'

2025-01-10 15:47:30